2-5 softmax 回归的简洁实现

我们发现通过深度学习框架的高级API能够使实现线性回归变得更加容易。 同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。 本节如在上节中一样, 继续使用Fashion-MNIST数据集,并保持批量大小为256。

python 复制代码
import torch
from torch import nn  # 通过pytorch的nn的module
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

初始化模型参数

softmax回归的输出层是一个全连接层。 因此,为了实现我们的模型, 我们只需在Sequential中添加一个带有10个输出的全连接层。 同样,在这里Sequential并不是必要的, 但它是实现深度模型的基础。 我们仍然以均值0和标准差0.01随机初始化权重。

python 复制代码
# PyTorch不会隐式地调整输入的形状。因此,
# 我们在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10)) # 这里使用了PyTorch中的nn.Sequential来构建一个顺序容器,将层按顺序添加到网络中
# nn.Flatten():这一层的作用是将输入的数据展平成一维。假设输入的数据是一个28x28的二维图像,展平后将变成一个784(28*28)长度的一维向量。
# nn.Linear(784, 10):这是一个全连接层(线性层),输入大小为784(展平后的图像向量),输出大小为10(假设有10个类别)。

def init_weights(m):  # 这里定义了一个函数init_weights,用于初始化网络中的权重。
    if type(m) == nn.Linear: # 这行代码检查传入的层是否为nn.Linear类型,即全连接层。
        nn.init.normal_(m.weight, std=0.01) # 如果该层是全连接层,则使用nn.init.normal_方法将该层的权重初始化为均值为0,标准差为0.01的正态分布随机值。

net.apply(init_weights);  # net.apply方法会遍历网络中的每一层,并将init_weights函数应用到每一层上,完成权重的初始化。

在交叉熵损失函数中传递未归一化的预测,并同时softmax及其对数

python 复制代码
loss = nn.CrossEntropyLoss(reduction='none')

在这里,我们使用学习率为0.1的小批量随机梯度下降作为优化算法。 这与我们在线性回归例子中的相同,这说明了优化器的普适性。

python 复制代码
trainer = torch.optim.SGD(net.parameters(), lr=0.1)

训练

接下来我们调用之前定义的训练函数来训练模型。

python 复制代码
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

相关推荐
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
一 铭2 小时前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
麻雀无能为力6 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心6 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield6 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域7 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技7 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_18 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎9 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎9 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程