2-5 softmax 回归的简洁实现

我们发现通过深度学习框架的高级API能够使实现线性回归变得更加容易。 同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。 本节如在上节中一样, 继续使用Fashion-MNIST数据集,并保持批量大小为256。

python 复制代码
import torch
from torch import nn  # 通过pytorch的nn的module
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

初始化模型参数

softmax回归的输出层是一个全连接层。 因此,为了实现我们的模型, 我们只需在Sequential中添加一个带有10个输出的全连接层。 同样,在这里Sequential并不是必要的, 但它是实现深度模型的基础。 我们仍然以均值0和标准差0.01随机初始化权重。

python 复制代码
# PyTorch不会隐式地调整输入的形状。因此,
# 我们在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10)) # 这里使用了PyTorch中的nn.Sequential来构建一个顺序容器,将层按顺序添加到网络中
# nn.Flatten():这一层的作用是将输入的数据展平成一维。假设输入的数据是一个28x28的二维图像,展平后将变成一个784(28*28)长度的一维向量。
# nn.Linear(784, 10):这是一个全连接层(线性层),输入大小为784(展平后的图像向量),输出大小为10(假设有10个类别)。

def init_weights(m):  # 这里定义了一个函数init_weights,用于初始化网络中的权重。
    if type(m) == nn.Linear: # 这行代码检查传入的层是否为nn.Linear类型,即全连接层。
        nn.init.normal_(m.weight, std=0.01) # 如果该层是全连接层,则使用nn.init.normal_方法将该层的权重初始化为均值为0,标准差为0.01的正态分布随机值。

net.apply(init_weights);  # net.apply方法会遍历网络中的每一层,并将init_weights函数应用到每一层上,完成权重的初始化。

在交叉熵损失函数中传递未归一化的预测,并同时softmax及其对数

python 复制代码
loss = nn.CrossEntropyLoss(reduction='none')

在这里,我们使用学习率为0.1的小批量随机梯度下降作为优化算法。 这与我们在线性回归例子中的相同,这说明了优化器的普适性。

python 复制代码
trainer = torch.optim.SGD(net.parameters(), lr=0.1)

训练

接下来我们调用之前定义的训练函数来训练模型。

python 复制代码
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

相关推荐
晓数34 分钟前
“平价”微智码初尝试
人工智能·jetbrains
新加坡内哥谈技术34 分钟前
MCP:人工智能时代的HTTP?探索AI通信新标准
人工智能·自然语言处理·chatgpt
0x2113 小时前
[论文阅读]REPLUG: Retrieval-Augmented Black-Box Language Models
论文阅读·人工智能·语言模型
JOYCE_Leo164 小时前
一文详解卷积神经网络中的卷积层和池化层原理 !!
人工智能·深度学习·cnn·卷积神经网络
~央千澈~5 小时前
对鸿蒙 Next 系统“成熟论”的深度剖析-优雅草卓伊凡
人工智能
Donvink5 小时前
【视频生成模型】通义万相Wan2.1模型本地部署和LoRA微调
人工智能·深度学习·aigc·音视频
訾博ZiBo5 小时前
AI日报 - 2025年04月29日
人工智能
爱喝奶茶的企鹅5 小时前
Ethan独立开发产品日报 | 2025-04-27
人工智能·程序员·开源
极小狐5 小时前
如何对极狐GitLab 议题进行过滤和排序?
人工智能·git·机器学习·gitlab