论文阅读:Large Language Models for Education: A Survey and Outlook

Large Language Models for Education: A Survey and Outlook\

这篇论文是关于大型语言模型(Large Language Models,简称LLMs)在教育领域应用的综合调查和展望。

标题与作者

  • 标题: Large Language Models for Education: A Survey and Outlook
  • 作者: Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang, Philip S. Yu, Qingsong Wen

摘要(Abstract)

  • 论文概述了LLMs在教育环境中的多种技术,包括学生和教师辅助、自适应学习和商业工具。
  • 系统回顾了每个视角下的技术进步,整理了相关数据集和基准测试,并识别了LLMs部署在教育中的相关风险和挑战。
  • 概述了未来的研究方向,强调了有前景的方向。

第1节:引言(Introduction)

  • 论文讨论了过去几十年中教育领域对人工智能(AI)的兴趣,以及教育数据挖掘方法在教育中的广泛应用。
  • 强调了LLMs在多个教育场景中取得的最新进展和表现。

第2节:LLM在教育应用(LLM in Education Applications)

  • 2.1 概述:根据用户在教育中的角色和使用场景对教育应用进行分类。
  • 2.2 学习辅助:讨论了LLMs在提供及时学习支持方面的作用,包括问题解决、错误纠正和困惑帮助。
  • 2.3 教学辅助:探讨了LLMs在辅助教师方面的潜力,包括问题生成、自动评分和教学材料创建。
  • 2.4 自适应学习:讨论了LLMs在知识追踪和内容个性化方面的应用。
  • 2.5 教育工具包:介绍了利用LLMs的商业教育工具,包括聊天机器人、内容创建、教学辅助、测验生成器和协作工具。

第3节:数据集和基准(Dataset and Benchmark)

  • 讨论了为文本丰富的教育下游任务构建的数据集和基准测试,这些任务利用LLMs的广泛知识和语言理解来执行特定的功能。

第4节:风险和潜在挑战(Risks and Potential Challenges)

  • 讨论了随着生成性AI和LLMs的兴起而出现的风险和挑战,并总结了实施护栏和负责任AI的一些早期提议。

第5节:未来方向(Future Directions)

  • 讨论了LLMs在教育中的未来机会,并概述了有希望的方向,包括教学兴趣对齐的LLMs、LLM多代理教育系统、多模态和多语言支持、边缘计算和效率、专业模型的高效训练,以及伦理和隐私考虑。

第6节:结论(Conclusion)

  • 论文总结了LLMs快速发展对教育的革命性影响,并希望这项调查能够促进和启发LLMs在教育领域的更多创新工作。

参考文献(References)

  • 提供了一系列相关的研究文献和预印本论文,涵盖了LLMs在教育中应用的多个方面。

附录(Appendix)

  • 提供了一个表格,总结了评估LLMs在教育应用上常用的公共数据集和基准测试。

图表

  • 论文中包含了图表,如LLMs在教育应用的分类法(Figure 1),以及未来LLMs在教育中的方向(Figure 3)。

贡献

  • 提供了一个全面且最新的关于LLMs在教育领域的调查。
  • 提出了一个新的以技术为中心的分类法,全面分析了LLMs在教育中的应用。
  • 讨论了当前的风险和挑战,并强调了未来的研究方向。

风险和挑战

  • 论文强调了LLMs在教育中应用的公平性、可靠性、透明度、隐私和安全问题,以及过度依赖LLMs可能带来的风险。

未来研究方向

  • 提出了几个未来研究的方向,包括开发与教学兴趣对齐的LLMs、构建基于多代理的LLMs系统、支持多模态和多语言的LLMs、利用边缘计算提高效率、训练专业领域的专用模型,以及考虑伦理和隐私问题。

整体来看,这篇论文为理解LLMs在教育领域的应用提供了一个全面的视角,并对未来的发展方向提出了有见地的预测和建议。

相关推荐
Liudef069 小时前
FLUX.1-Kontext 高效训练 LoRA:释放大语言模型定制化潜能的完整指南
人工智能·语言模型·自然语言处理·ai作画·aigc
静心问道9 小时前
大型语言模型中的自动化思维链提示
人工智能·语言模型·大模型
难受啊马飞2.012 小时前
如何判断 AI 将优先自动化哪些任务?
运维·人工智能·ai·语言模型·程序员·大模型·大模型学习
s1ckrain14 小时前
【论文阅读】VARGPT-v1.1
论文阅读·多模态大模型·统一生成模型
静心问道14 小时前
GoT:超越思维链:语言模型中的有效思维图推理
人工智能·计算机视觉·语言模型
静心问道16 小时前
大语言模型能够理解并可以通过情绪刺激进行增强
人工智能·语言模型·大模型
Catching Star18 小时前
【论文笔记】【强化微调】Vision-R1:首个针对多模态 LLM 制定的强化微调方法,以 7B 比肩 70B
论文阅读·强化微调
王上上18 小时前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
onceco1 天前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
s1ckrain1 天前
【论文阅读】DeepEyes: Incentivizing “Thinking with Images” via Reinforcement Learning
论文阅读·强化学习·多模态大模型·vlm