论文阅读:Large Language Models for Education: A Survey and Outlook

Large Language Models for Education: A Survey and Outlook\

这篇论文是关于大型语言模型(Large Language Models,简称LLMs)在教育领域应用的综合调查和展望。

标题与作者

  • 标题: Large Language Models for Education: A Survey and Outlook
  • 作者: Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang, Philip S. Yu, Qingsong Wen

摘要(Abstract)

  • 论文概述了LLMs在教育环境中的多种技术,包括学生和教师辅助、自适应学习和商业工具。
  • 系统回顾了每个视角下的技术进步,整理了相关数据集和基准测试,并识别了LLMs部署在教育中的相关风险和挑战。
  • 概述了未来的研究方向,强调了有前景的方向。

第1节:引言(Introduction)

  • 论文讨论了过去几十年中教育领域对人工智能(AI)的兴趣,以及教育数据挖掘方法在教育中的广泛应用。
  • 强调了LLMs在多个教育场景中取得的最新进展和表现。

第2节:LLM在教育应用(LLM in Education Applications)

  • 2.1 概述:根据用户在教育中的角色和使用场景对教育应用进行分类。
  • 2.2 学习辅助:讨论了LLMs在提供及时学习支持方面的作用,包括问题解决、错误纠正和困惑帮助。
  • 2.3 教学辅助:探讨了LLMs在辅助教师方面的潜力,包括问题生成、自动评分和教学材料创建。
  • 2.4 自适应学习:讨论了LLMs在知识追踪和内容个性化方面的应用。
  • 2.5 教育工具包:介绍了利用LLMs的商业教育工具,包括聊天机器人、内容创建、教学辅助、测验生成器和协作工具。

第3节:数据集和基准(Dataset and Benchmark)

  • 讨论了为文本丰富的教育下游任务构建的数据集和基准测试,这些任务利用LLMs的广泛知识和语言理解来执行特定的功能。

第4节:风险和潜在挑战(Risks and Potential Challenges)

  • 讨论了随着生成性AI和LLMs的兴起而出现的风险和挑战,并总结了实施护栏和负责任AI的一些早期提议。

第5节:未来方向(Future Directions)

  • 讨论了LLMs在教育中的未来机会,并概述了有希望的方向,包括教学兴趣对齐的LLMs、LLM多代理教育系统、多模态和多语言支持、边缘计算和效率、专业模型的高效训练,以及伦理和隐私考虑。

第6节:结论(Conclusion)

  • 论文总结了LLMs快速发展对教育的革命性影响,并希望这项调查能够促进和启发LLMs在教育领域的更多创新工作。

参考文献(References)

  • 提供了一系列相关的研究文献和预印本论文,涵盖了LLMs在教育中应用的多个方面。

附录(Appendix)

  • 提供了一个表格,总结了评估LLMs在教育应用上常用的公共数据集和基准测试。

图表

  • 论文中包含了图表,如LLMs在教育应用的分类法(Figure 1),以及未来LLMs在教育中的方向(Figure 3)。

贡献

  • 提供了一个全面且最新的关于LLMs在教育领域的调查。
  • 提出了一个新的以技术为中心的分类法,全面分析了LLMs在教育中的应用。
  • 讨论了当前的风险和挑战,并强调了未来的研究方向。

风险和挑战

  • 论文强调了LLMs在教育中应用的公平性、可靠性、透明度、隐私和安全问题,以及过度依赖LLMs可能带来的风险。

未来研究方向

  • 提出了几个未来研究的方向,包括开发与教学兴趣对齐的LLMs、构建基于多代理的LLMs系统、支持多模态和多语言的LLMs、利用边缘计算提高效率、训练专业领域的专用模型,以及考虑伦理和隐私问题。

整体来看,这篇论文为理解LLMs在教育领域的应用提供了一个全面的视角,并对未来的发展方向提出了有见地的预测和建议。

相关推荐
陈天伟教授6 小时前
人工智能应用- 语言理解:04.大语言模型
人工智能·语言模型·自然语言处理
算法狗210 小时前
大模型面试题:混合精度训练的缺点是什么
人工智能·深度学习·机器学习·语言模型
哈__10 小时前
CANN加速语音识别ASR推理:声学模型与语言模型融合优化
人工智能·语言模型·语音识别
kjkdd11 小时前
6.1 核心组件(Agent)
python·ai·语言模型·langchain·ai编程
觉醒大王14 小时前
哪些文章会被我拒稿?
论文阅读·笔记·深度学习·考研·自然语言处理·html·学习方法
松☆14 小时前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型
陈天伟教授15 小时前
人工智能应用- 语言理解:05.大语言模型
人工智能·语言模型·自然语言处理
晚霞的不甘15 小时前
守护智能边界:CANN 的 AI 安全机制深度解析
人工智能·安全·语言模型·自然语言处理·前端框架
空白诗16 小时前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵
玄同76516 小时前
SQLite + LLM:大模型应用落地的轻量级数据存储方案
jvm·数据库·人工智能·python·语言模型·sqlite·知识图谱