论文阅读:Explainability for Large Language Models: A Survey

Explainability for Large Language Models: A Survey

这篇论文是由Haiyan Zhao等人撰写的关于大型语言模型(LLMs)可解释性的研究综述,题为《Explainability for Large Language Models: A Survey》。以下是对论文内容的详细总结:

摘要

  • 大型语言模型(LLMs)在自然语言处理(NLP)任务中表现出色,但其内部机制不透明,这给下游应用带来了风险。
  • 论文提出了一种可解释性技术的分类,并为基于Transformer的语言模型提供了结构化的方法概览。
  • 论文根据LLMs的训练范式(传统微调范式和提示范式)对技术进行分类,并讨论了评估生成解释的指标,以及如何利用解释来调试模型和提高性能。
  • 最后,论文探讨了在LLMs时代相比于传统深度学习模型的解释技术所面临的主要挑战和新兴机遇。

1. 引言

  • LLMs如BERT、GPT-3、GPT-4等在商业产品中得到应用,但它们的复杂"黑箱"系统特性使得模型解释更具挑战性。
  • 可解释性对于建立用户信任和帮助研究人员识别偏差、风险和性能改进领域至关重要。

2. LLMs的训练范式

  • 介绍了LLMs的两种主要训练范式:传统的微调范式和提示范式,并指出不同范式需要不同的解释类型。

3. 传统微调范式的解释

  • 讨论了为LLMs提供局部解释(针对单个预测)和全局解释(针对模型整体知识)的方法。
  • 局部解释包括特征归因、注意力机制、示例基础和自然语言解释。
  • 全局解释关注于理解模型的内部工作机制,包括探针方法、神经元激活分析、概念基础方法和机械解释。

4. 提示范式的解释

  • 针对基于提示的模型,讨论了新的解释技术,如链式思考(CoT)解释和利用LLMs自身的推理和解释能力来提高预测性能。

5. 解释评估

  • 讨论了评估解释的两个主要维度:对人类来说的合理性和在捕捉LLMs内部逻辑方面的忠实度。
  • 介绍了评估局部解释和CoT解释的不同指标和方法。

6. 研究挑战

  • 探讨了在可解释性研究中需要进一步研究的关键问题,包括缺乏真实解释的基准数据集、LLMs的新兴能力来源、不同范式的比较、LLMs的捷径学习、注意力冗余、从快照解释到时间分析的转变,以及安全性和伦理问题。

7. 结论

  • 论文总结了LLMs可解释性技术的主要发展方向,并强调了随着LLMs的发展,可解释性对于确保这些模型的透明度、公平性和有益性至关重要。

参考文献

  • 提供了一系列相关研究的引用,涵盖了可解释性、机器学习算法、自然语言处理等领域。

整体而言,这篇论文为理解和解释大型语言模型提供了一个全面的框架,并强调了在开发和部署这些强大工具时考虑可解释性的重要性。

相关推荐
合新通信 | 让光不负所托1 分钟前
氟化液、矿物油、改性硅油三种冷却液,分别适合搭配什么功率等级的浸没式液冷光模块?
人工智能·安全·云计算·信息与通信·光纤通信
啊阿狸不会拉杆2 分钟前
《机器学习》第五章-集成学习(Bagging/Boosting)
人工智能·算法·机器学习·计算机视觉·集成学习·boosting
Programmer boy3 分钟前
我是一名软件行业从业者,AI主要帮助我做哪些工作?
人工智能
Coder_Boy_4 分钟前
基于SpringAI的在线考试系统-成绩管理功能实现方案
开发语言·前端·javascript·人工智能·spring boot
lxs-4 分钟前
探索自然语言处理(NLP)的旅程:从分词到文本生成
人工智能·自然语言处理
大模型任我行4 分钟前
腾讯:RAG生成器感知的排序模型
人工智能·语言模型·自然语言处理·论文笔记
玩转AI6666 分钟前
AI-论文智能降重工具
人工智能
科研计算中心8 分钟前
2026年仿真计算对电脑的要求深度解析:从硬件选型到算力方案的全维度适配指南
人工智能·云计算·算力·高性能计算·仿真计算
幻云20108 分钟前
Python深度学习:从筑基与巅峰
前端·javascript·vue.js·人工智能·python
Light609 分钟前
庖丁解牛:深入JavaScript内存管理,从内存泄漏到AI赋能的性能优化
javascript·人工智能·性能优化·内存管理·垃圾回收·内存泄漏·v8引擎