基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真,在计多目标跟踪领域,基于CS模型和CV模型的多目标协同滤波跟踪算法是近年来发展起来的先进技术,旨在提高在复杂场景下对多个移动目标的跟踪精度和鲁棒性。这类算法融合了目标间的合作信息,利用目标间的关系和数据关联性来优化跟踪结果。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

(完整程序运行后无水印)

3.核心程序

复制代码
figure;
subplot(3,2,[1,2]);
plot(y_obj2(1,1:N),y_obj2(4,1:N),'r-','Linewidth',1);
hold on;
plot(X_observation_obj2(1,1:N),X_observation_obj2(4,1:N),'b-');
hold on;
legend('真实轨迹','滤波轨迹');
xlabel('x(m)'),ylabel('y(m)');
grid on;
title('弹2,CV模型+"当前"状态模型');
% axis([200,4400,130,250]);

subplot(3,2,3);
plot(X_obser_se_obj2(1,1:N),'b-');
title('弹2,x方向位置误差均值,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,-5,5]);
subplot(3,2,4);
plot(X_obser_se_obj2(4,1:N),'b-');
title('弹2,y方向位置误差均值,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,-5,5]);

subplot(3,2,5);
plot(X_obser_mse_obj2(1,1:N),'b-');
title('弹2,x方向位置均方误差,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,0,5]);
subplot(3,2,6);
plot(X_obser_mse_obj2(4,1:N),'b-');
title('弹2,y方向位置均方误差,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,0,5]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure;
subplot(321);
plot(y_obj2(2,1:N),'r-','Linewidth',1);
hold on;
plot(X_observation_obj2(2,1:N));
hold on;
legend('x真实速度','滤波速度');
xlabel('时间(s)'),ylabel('速度(m/s)');
grid on;
title('弹2,CV模型+"当前"状态模型');
axis([0,N,-2,20]);


subplot(322);
plot(y_obj2(5,1:N),'r-','Linewidth',1);
hold on;
plot(X_observation_obj2(5,1:N));
hold on;
legend('y真实速度','滤波速度');
xlabel('时间(s)'),ylabel('速度(m/s)');
grid on;
title('弹2,CV模型+"当前"状态模型');
axis([0,N,-2,20]);

subplot(323);
plot(X_obser_se_obj2(2,1:N),'b-');
title('弹2,x方向速度误差均值,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,-5,5]);

subplot(324);
plot(X_obser_se_obj2(5,1:N),'b-');
title('弹2,y方向速度误差均值,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,-5,5]);

subplot(325);
plot(X_obser_mse_obj2(2,1:N),'b-');
title('导弹2,x方向位置均方误差,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,0,5]);

subplot(326);
plot(X_obser_mse_obj2(5,1:N),'b-');
title('弹2,y方向位置均方误差,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,0,5]);


%%%%%%%%%%%%%%%%%%%%%%%%%%目标1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%目标1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%目标1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%目标1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure;
subplot(3,2,[1,2]);
plot(XObj(1,1:N),XObj(4,1:N),'r-','Linewidth',1);
hold on;
plot(X_observation_obj3(1,1:N),X_observation_obj3(4,1:N),'b-');
hold on;
legend('真实轨迹','滤波轨迹');
xlabel('x(m)'),ylabel('y(m)');
grid on;
title('目标,CV模型+"当前"状态模型');
% axis([200,4400,130,200]);

subplot(3,2,3);
plot(X_obser_se_obj3(1,1:N),'b-');
title('目标,x方向位置误差均值,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,-5,5]);
subplot(3,2,4);
plot(X_obser_se_obj3(4,1:N),'b-');
title('目标,y方向位置误差均值,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,-5,5]);

subplot(3,2,5);
plot(X_obser_mse_obj3(1,1:N),'b-');
title('目标,x方向位置均方误差,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,0,5]);
subplot(3,2,6);
plot(X_obser_mse_obj3(4,1:N),'b-');
title('目标,y方向位置均方误差,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,0,5]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure;
subplot(321);
plot(XObj(2,1:N),'r-','Linewidth',1);
hold on;
plot(X_observation_obj3(2,1:N));
hold on;
legend('x真实速度','滤波速度');
xlabel('时间(s)'),ylabel('速度(m/s)');
grid on;
title('目标,CV模型+"当前"状态模型');
axis([0,N,-2,20]);


subplot(322);
plot(XObj(5,1:N),'r-','Linewidth',1);
hold on;
plot(X_observation_obj3(5,1:N));
hold on;
legend('y真实速度','滤波速度');
xlabel('时间(s)'),ylabel('速度(m/s)');
grid on;
title('目标,CV模型+"当前"状态模型');
axis([0,N,-2,20]);

subplot(323);
plot(X_obser_se_obj3(2,1:N),'b-');
title('目标,x方向速度误差均值,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,-5,5]);

subplot(324);
plot(X_obser_se_obj3(5,1:N),'b-');
title('目标,y方向速度误差均值,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,-5,5]);

subplot(325);
plot(X_obser_mse_obj3(2,1:N),'b-');
title('目标,x方向位置均方误差,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,0,5]);

subplot(326);
plot(X_obser_mse_obj3(5,1:N),'b-');
title('目标,y方向位置均方误差,CV模型+"当前"状态模型');xlabel('时间(s)'),ylabel('误差均值(m)');
grid on;
axis([0,N,0,5]);

figure;
plot(XObj(1,600:N),XObj(4,600:N),'k-');
hold on;
plot(x1,y1,'r-');
hold on;
plot(x2,y2,'b-');
hold on;
legend('目标','导弹1','导弹2');
axis([0,4000,-1000,2500]);
grid on

save Res.mat MSE1 MSE2 X_obser_mse_obj1 X_obser_mse_obj2 X_obser_mse_obj3 x1 x2 y1 y2
16_029m

4.本算法原理

这里首先介绍一下CV模型和CS(当前统计)模型:

CV:

CS:

实际应用中,CS模型和CV模型可以结合使用,先通过CS模型进行初步聚类和目标候选,然后在每个簇内应用CV模型的投票机制进行目标确认和数据关联优化。这样既利用了目标间的聚类特性,又通过合作投票增强了对目标状态估计的准确性,特别是在遮挡、重叠和快速运动等复杂场景下,能显著提高跟踪的稳定性和精度。

基于CS模型和CV模型的多目标协同滤波跟踪算法,通过整合目标聚类、共识选择和合作投票等机制,为解决复杂动态场景下的多目标跟踪问题提供了一套有效的方法。这些算法的实施细节和参数调整对最终性能有显著影响,需要根据具体应用场景进行细致调整和优化。

5.完整程序

VVV

相关推荐
IT猿手5 小时前
基于强化学习的多算子差分进化路径规划算法QSMODE的机器人路径规划问题研究,提供MATLAB代码
算法·matlab·机器人
fie88899 小时前
基于MATLAB的转子动力学建模与仿真实现(含碰摩、不平衡激励)
开发语言·算法·matlab
机器学习之心9 小时前
基于GRU门控循环单元的轴承剩余寿命预测MATLAB实现
深度学习·matlab·gru·轴承剩余寿命预测
简简单单做算法10 小时前
基于FFT粗估计和LS最小二乘法精估计的正弦信号参数估计和检测matlab仿真
matlab·最小二乘法·参数估计·fft粗估计·ls最小二乘法
kaikaile199510 小时前
基于MATLAB的滑动轴承弹流润滑仿真程序实现
开发语言·matlab
Not Dr.Wang42220 小时前
FIR数字滤波器设计的两种实现
matlab
3GPP仿真实验室20 小时前
【MATLAB源码】CORDIC-QR :基于Cordic硬件级矩阵QR分解
开发语言·matlab·矩阵
民乐团扒谱机1 天前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Evand J1 天前
TDOA(到达时间差)的GDOP和CRLB计算的MATLAB例程,论文复现,附参考文献。GDOP:几何精度因子&CRLB:克拉美罗下界
开发语言·matlab·tdoa·crlb·gdop
机器学习之心HML1 天前
MATLAB豆渣发酵工艺优化 - 基于响应面法结合遗传算法
matlab