使用八股搭建神经网络

神经网络搭建八股

使用tf.keras

六步法搭建模型

1.import

2.train, test 指定输入特征/标签

3.model = tf.keras.model.Sequential

在Squential,搭建神经网络

4.model.compile

配置训练方法,选择哪种优化器、损失函数、评测指标

5.model.fit 执行训练过程,告知训练集输入特征,batch,epoch

6.model.summary打印网络结构和参数统计

model = tf.keras.model.Sequential

Sequential是个容器,封装了网络结构

网络结构例子:

拉直层:tf.keras.layers.Flatten()

全连接层:tf.keras.layers.Dense(神经元个数,activetion="激活函数",kernel_regularizer=那种正则化)

卷积层:

tf.keras.layers.Conv2D(filters= 卷积核个数,kernel_size=卷积核尺寸,strides=卷积步长,padding="valid"or"same"

LSTM层:

tf.keras.layers.LSTM()

model.compile

model.compile(optimizer=优化器,loss=损失函数,metrics=["准确率"]

后期可通过tensorflow官网查询函数的具体用法,调节超参数

有些网络输出经过softmax概率分布输出,有些不经过概率分布输出

当网络评测指标和蒙的概率一样,例如十分类概率为.1/10.可能概率分布错了

独热码y_和y是[010]网络输出则为[0.xx, 0.xx, 0.xx]

第三种方法 y_= [1] y =[0.2xx,0xx,0xx]

model.fit

model.fit(训练集的输入特征,训练集的标签,batch_size, epochs=,

validation_data=(测试集的输入特征,标签),

validation_split=从训练集划分多少比例给测试集,

validation_freq=多少次epoch测试一次)

model.summary

重构Iris分类

import tensorflow as tf
from sklearn import datasets
import numpy as np

x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)

model.summary()

自定义搭建模型

swquential可以搭建上层输出就是下层输入的网络结构,但是无法搭建带有跳连特征的非顺序网络结构

class MyModel(Model)

def init(self):

super(MyModel, self) __init()

定义网络结构块

def call(self, x): #写出前向传播

调用网络结构块,实现前向传播

return y

model = MyModel

__init__定义出积木

call调用积木,实现前向传播

import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
from sklearn import datasets
import numpy as np

x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

class IrisModel(Model):
    def __init__(self):
        super(IrisModel, self).__init__()
        self.d1 = Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())

    def call(self, x):
        y = self.d1(x)
        return y

model = IrisModel()

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
model.summary()

每循环一次train,计算一次test的测试指标

MNIST数据集

1.导入MNIST数据集

mnist=tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data(

2.作为输入特征,输入神经网络时,将数据拉伸成一维数组:

tf.keras.layers.Flatten()

把784个像素点的灰度值作为输入特征放入神经网络

plt.imshow(x_train[0], cmap='gray')#绘制灰度图

plt.show()

0表示纯黑色255表示纯白色

需要对测试集和数据集进行归一化处理,把数值变小,更适合神经网络吸收,使用sequental训练模型,由于输入特征为数组,输出为概率分布,所以我们选择sparse_categorical_accuracy

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

准确率是测试集的准确率

自定义Model实现 __init__中定义cell函数中用到的层

import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras import Model

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0


class MnistModel(Model):
    def __init__(self):
        super(MnistModel, self).__init__()
        self.flatten = Flatten()
        self.d1 = Dense(128, activation='relu')
        self.d2 = Dense(10, activation='softmax')

    def call(self, x):
        x = self.flatten(x)
        x = self.d1(x)
        y = self.d2(x)
        return y


model = MnistModel()

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

FASHION数据集

import tensorflow as tf

fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train),(x_test, y_test) = fashion.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()
相关推荐
靴子学长3 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
落魄君子5 小时前
ELM分类-单隐藏层前馈神经网络(Single Hidden Layer Feedforward Neural Network, SLFN)
神经网络·分类·数据挖掘
苏言の狗7 小时前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习
是Dream呀7 小时前
Python从0到100(七十八):神经网络--从0开始搭建全连接网络和CNN网络
网络·python·神经网络
paixiaoxin9 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
weixin_5152024910 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
吕小明么11 小时前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
CSBLOG12 小时前
深度学习试题及答案解析(一)
人工智能·深度学习
小陈phd12 小时前
深度学习之超分辨率算法——SRCNN
python·深度学习·tensorflow·卷积