Codeforces Round #956 (Div. 2) and ByteRace 2024

A. Array Divisibility

Given n𝑛, find an array of positive nonzero integers, with each element less than or equal to 105 that is beautiful subject to all 1≤𝑘≤𝑛.

It can be shown that an answer always exists.

复制代码
#include<bits/stdc++.h>

using namespace std;

vector<int> findBeautifulArray(int n) {
    vector<int> array(n);
    for (int i = 0; i < n; ++i) {
        array[i] = i + 1;  // 选取每个数为其下标的平方
    }
    return array;
}

void solve(){
	int n;
	cin >> n;
	vector<int> beautifulArray = findBeautifulArray(n);
    for (int num : beautifulArray) {
        cout << num << " ";
    }
    cout << endl;
}

int main(){
	int T;
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	cin >> T;
	for(int i = 0; i < T; i ++)
		solve();
	return 0;
}

B. Corner Twist

You are given two grids of numbers a𝑎 and b𝑏, with n𝑛 rows and m𝑚 columns. All the values in the grid are 00, 11 or 22.

You can perform the following operation on a𝑎 any number of times:

  • Pick any subrectangle in the grid with length and width ≥2≥2. You are allowed to choose the entire grid as a subrectangle.

  • The subrectangle has four corners. Take any pair of diagonally opposite corners of the chosen subrectangle and add 11 to their values modulo 33.

  • For the pair of corners not picked, add 22 to their values modulo 33.

    #include<bits/stdc++.h>

    using namespace std;

    void solve(){
    int n, m;
    cin >> n >> m;

    复制代码
      vector<vector<int>> a(n, vector<int>(m)), b(n, vector<int>(m));
      for (int i = 0; i < n; ++i) {
      	string s;
      	cin >> s;
          for (int j = 0; j < m; ++j)
              a[i][j] = s[j] - '0';
      }
    
      for (int i = 0; i < n; ++i) {
      	string s;
      	cin >> s;
          for (int j = 0; j < m; ++j)
              b[i][j] = s[j] - '0';
      }
      for(int i = 0; i < n; i ++){
      	int sum1 = 0, sum2 = 0;
      	for(int j = 0; j < m; j ++){
      		sum1 += a[i][j];
      		sum2 += b[i][j];
      	}
      	if(sum1 % 3 != sum2 % 3){
      		cout << "NO" << endl;
      		return ;
      	}
      }
      for(int i = 0; i < m; i ++){
      	int sum1 = 0, sum2 = 0;
      	for(int j = 0; j < n; j ++){
      		sum1 += a[j][i];
      		sum2 += b[j][i];
      	}
      	if(sum1 % 3 != sum2 % 3){
      		cout << "NO" << endl;
      		return ;
      	}
      }
      cout << "Yes" << endl;

    }

    int main(){
    int T;
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin >> T;
    for(int i = 0; i < T; i ++)
    solve();
    return 0;
    }

C. Have Your Cake and Eat It Too

Given the values of each piece of the cake for each person, you need to give each person a contiguous slice of cake.In other words, the indices at the left and right ends of these subarrays (the slices given to each person) can be represented as (𝑙𝑎,𝑟𝑎), (𝑙𝑏,𝑟𝑏) and(𝑙𝑐,𝑟𝑐) respectively for Alice, Bob and Charlie. The division needs to satisfy the following constraints:

复制代码
#include<bits/stdc++.h>

using namespace std;

void solve(){
	int n;
	cin >> n;
	array<vector<int>, 3> a;
	for(int i = 0; i < 3; i ++)
		a[i].resize(n);
	long long tot = 0;
	for(int i = 0; i < 3; i ++){
		for(int j = 0; j < n; j ++){
			cin >> a[i][j];
			if(i == 0)
				tot += a[i][j];
		}
	}
	array<int, 3> perm{0, 1, 2};
	do{
		array<int, 3> l{}, r{};
		int cur = 0;
		bool ok = true;
		for(int i = 0; i < 3; i ++){
			l[perm[i]] = cur + 1;
			long long sum = 0;
			while(sum < (tot + 2)/ 3 && cur < n)
				sum += a[perm[i]][cur ++];
			if(sum < (tot + 2) / 3){
				ok = false;
				break;
			}
			r[perm[i]] = cur;
		}
		if(ok){
			for(int i = 0; i < 3; i ++)
				cout << l[i] << " " << r[i] << " \n"[i == 2];
			return ;
		}
	}while(next_permutation(perm.begin(), perm.end()));
	cout << "-1\n";
	return ;
}	

int main(){
	int T;
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	cin >> T;
	for(int i = 0; i < T; i ++)
		solve();
	return 0;
}

D. Swap Dilemma

Given two arrays of distinct positive integers a𝑎 and b𝑏 of length n𝑛, we would like to make both the arrays the same. Two arrays x𝑥 and y𝑦 of length k𝑘 are said to be the same when for all 1≤𝑖≤𝑘, 𝑥𝑖=𝑦𝑖.Now in one move, you can choose some index 𝑙 and 𝑟 in 𝑎 (𝑙≤𝑟) and swap 𝑎𝑙 and 𝑎𝑟, then choose some 𝑝 and 𝑞 (𝑝≤𝑞) in 𝑏 such that 𝑟−𝑙=𝑞−𝑝 and swap 𝑏𝑝 and 𝑏𝑞.

处理索引,在进行奇偶判断

复制代码
#include<bits/stdc++.h>

using namespace std;

bool parity(const vector<int> a){
	const int n = a.size();
	vector<bool> vis(n);
	int p = n % 2;
	for(int i = 0; i < n; i ++){
		if(vis[i])
			continue;
		for(int j = i; !vis[j] ; j = a[j])
			vis[j] = true;
		p ^= 1;
	}
	return p;
}

void solve(){
	int n;
	cin >> n;
	vector<int> a(n), b(n);
	for(int i = 0; i < n; i ++)
		cin >> a[i];
	for(int i = 0; i < n; i ++)
		cin >> b[i];
	auto va = a, vb = b;
	sort(va.begin(), va.end());
	sort(vb.begin(), vb.end());
	if(va != vb){
		cout << "NO" << endl;
		return ;
	}
	for(int i = 0; i < n; i ++){
		a[i] = lower_bound(va.begin(), va.end(), a[i]) - va.begin();
	}
	for(int i = 0; i < n; i ++){
		b[i] = lower_bound(vb.begin(), vb.end(), b[i]) - vb.begin();
	}
	if(parity(a) != parity(b))
		cout << "NO" << "\n";
	else
		cout << "YES" << "\n";
	return ;
}	

int main(){
	int T;
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	cin >> T;
	for(int i = 0; i < T; i ++)
		solve();
	return 0;
}
相关推荐
你也向往长安城吗1 小时前
推荐一个三维导航库:three-pathfinding-3d
javascript·算法
蒋星熠1 小时前
C++零拷贝网络编程实战:从理论到生产环境的性能优化之路
网络·c++·人工智能·深度学习·性能优化·系统架构
百度智能云1 小时前
VectorDB+FastGPT一站式构建:智能知识库与企业级对话系统实战
算法
CHANG_THE_WORLD1 小时前
# C++ 中的 `string_view` 和 `span`:现代安全视图指南
开发语言·c++
雨落倾城夏未凉1 小时前
9.c++new申请二维数组
c++·后端
雨落倾城夏未凉2 小时前
8.被free回收的内存是立即返还给操作系统吗?为什么?
c++·后端
雨落倾城夏未凉2 小时前
6.new和malloc的区别
c++·后端
郝学胜-神的一滴2 小时前
深入理解QFlags:Qt中的位标志管理工具
开发语言·c++·qt·程序人生
John.Lewis2 小时前
数据结构初阶(13)排序算法-选择排序(选择排序、堆排序)(动图演示)
c语言·数据结构·排序算法
AI小白的Python之路2 小时前
数据结构与算法-排序
数据结构·算法·排序算法