Codeforces Round #956 (Div. 2) and ByteRace 2024

A. Array Divisibility

Given n𝑛, find an array of positive nonzero integers, with each element less than or equal to 105 that is beautiful subject to all 1≤𝑘≤𝑛.

It can be shown that an answer always exists.

复制代码
#include<bits/stdc++.h>

using namespace std;

vector<int> findBeautifulArray(int n) {
    vector<int> array(n);
    for (int i = 0; i < n; ++i) {
        array[i] = i + 1;  // 选取每个数为其下标的平方
    }
    return array;
}

void solve(){
	int n;
	cin >> n;
	vector<int> beautifulArray = findBeautifulArray(n);
    for (int num : beautifulArray) {
        cout << num << " ";
    }
    cout << endl;
}

int main(){
	int T;
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	cin >> T;
	for(int i = 0; i < T; i ++)
		solve();
	return 0;
}

B. Corner Twist

You are given two grids of numbers a𝑎 and b𝑏, with n𝑛 rows and m𝑚 columns. All the values in the grid are 00, 11 or 22.

You can perform the following operation on a𝑎 any number of times:

  • Pick any subrectangle in the grid with length and width ≥2≥2. You are allowed to choose the entire grid as a subrectangle.

  • The subrectangle has four corners. Take any pair of diagonally opposite corners of the chosen subrectangle and add 11 to their values modulo 33.

  • For the pair of corners not picked, add 22 to their values modulo 33.

    #include<bits/stdc++.h>

    using namespace std;

    void solve(){
    int n, m;
    cin >> n >> m;

    复制代码
      vector<vector<int>> a(n, vector<int>(m)), b(n, vector<int>(m));
      for (int i = 0; i < n; ++i) {
      	string s;
      	cin >> s;
          for (int j = 0; j < m; ++j)
              a[i][j] = s[j] - '0';
      }
    
      for (int i = 0; i < n; ++i) {
      	string s;
      	cin >> s;
          for (int j = 0; j < m; ++j)
              b[i][j] = s[j] - '0';
      }
      for(int i = 0; i < n; i ++){
      	int sum1 = 0, sum2 = 0;
      	for(int j = 0; j < m; j ++){
      		sum1 += a[i][j];
      		sum2 += b[i][j];
      	}
      	if(sum1 % 3 != sum2 % 3){
      		cout << "NO" << endl;
      		return ;
      	}
      }
      for(int i = 0; i < m; i ++){
      	int sum1 = 0, sum2 = 0;
      	for(int j = 0; j < n; j ++){
      		sum1 += a[j][i];
      		sum2 += b[j][i];
      	}
      	if(sum1 % 3 != sum2 % 3){
      		cout << "NO" << endl;
      		return ;
      	}
      }
      cout << "Yes" << endl;

    }

    int main(){
    int T;
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin >> T;
    for(int i = 0; i < T; i ++)
    solve();
    return 0;
    }

C. Have Your Cake and Eat It Too

Given the values of each piece of the cake for each person, you need to give each person a contiguous slice of cake.In other words, the indices at the left and right ends of these subarrays (the slices given to each person) can be represented as (𝑙𝑎,𝑟𝑎), (𝑙𝑏,𝑟𝑏) and(𝑙𝑐,𝑟𝑐) respectively for Alice, Bob and Charlie. The division needs to satisfy the following constraints:

复制代码
#include<bits/stdc++.h>

using namespace std;

void solve(){
	int n;
	cin >> n;
	array<vector<int>, 3> a;
	for(int i = 0; i < 3; i ++)
		a[i].resize(n);
	long long tot = 0;
	for(int i = 0; i < 3; i ++){
		for(int j = 0; j < n; j ++){
			cin >> a[i][j];
			if(i == 0)
				tot += a[i][j];
		}
	}
	array<int, 3> perm{0, 1, 2};
	do{
		array<int, 3> l{}, r{};
		int cur = 0;
		bool ok = true;
		for(int i = 0; i < 3; i ++){
			l[perm[i]] = cur + 1;
			long long sum = 0;
			while(sum < (tot + 2)/ 3 && cur < n)
				sum += a[perm[i]][cur ++];
			if(sum < (tot + 2) / 3){
				ok = false;
				break;
			}
			r[perm[i]] = cur;
		}
		if(ok){
			for(int i = 0; i < 3; i ++)
				cout << l[i] << " " << r[i] << " \n"[i == 2];
			return ;
		}
	}while(next_permutation(perm.begin(), perm.end()));
	cout << "-1\n";
	return ;
}	

int main(){
	int T;
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	cin >> T;
	for(int i = 0; i < T; i ++)
		solve();
	return 0;
}

D. Swap Dilemma

Given two arrays of distinct positive integers a𝑎 and b𝑏 of length n𝑛, we would like to make both the arrays the same. Two arrays x𝑥 and y𝑦 of length k𝑘 are said to be the same when for all 1≤𝑖≤𝑘, 𝑥𝑖=𝑦𝑖.Now in one move, you can choose some index 𝑙 and 𝑟 in 𝑎 (𝑙≤𝑟) and swap 𝑎𝑙 and 𝑎𝑟, then choose some 𝑝 and 𝑞 (𝑝≤𝑞) in 𝑏 such that 𝑟−𝑙=𝑞−𝑝 and swap 𝑏𝑝 and 𝑏𝑞.

处理索引,在进行奇偶判断

复制代码
#include<bits/stdc++.h>

using namespace std;

bool parity(const vector<int> a){
	const int n = a.size();
	vector<bool> vis(n);
	int p = n % 2;
	for(int i = 0; i < n; i ++){
		if(vis[i])
			continue;
		for(int j = i; !vis[j] ; j = a[j])
			vis[j] = true;
		p ^= 1;
	}
	return p;
}

void solve(){
	int n;
	cin >> n;
	vector<int> a(n), b(n);
	for(int i = 0; i < n; i ++)
		cin >> a[i];
	for(int i = 0; i < n; i ++)
		cin >> b[i];
	auto va = a, vb = b;
	sort(va.begin(), va.end());
	sort(vb.begin(), vb.end());
	if(va != vb){
		cout << "NO" << endl;
		return ;
	}
	for(int i = 0; i < n; i ++){
		a[i] = lower_bound(va.begin(), va.end(), a[i]) - va.begin();
	}
	for(int i = 0; i < n; i ++){
		b[i] = lower_bound(vb.begin(), vb.end(), b[i]) - vb.begin();
	}
	if(parity(a) != parity(b))
		cout << "NO" << "\n";
	else
		cout << "YES" << "\n";
	return ;
}	

int main(){
	int T;
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	cin >> T;
	for(int i = 0; i < T; i ++)
		solve();
	return 0;
}
相关推荐
WolfGang00732113 分钟前
代码随想录算法训练营Day50 | 拓扑排序、dijkstra(朴素版)
数据结构·算法
业精于勤的牙27 分钟前
浅谈:算法中的斐波那契数(四)
算法
一直都在57230 分钟前
数据结构入门:二叉排序树的删除算法
数据结构·算法
白云千载尽33 分钟前
ego_planner算法的仿真环境(主要是ros)-算法的解耦实现.
算法·无人机·规划算法·后端优化·ego·ego_planner
hweiyu0033 分钟前
排序算法简介及分类
数据结构
tang&38 分钟前
哈希碰撞攻防战:C++闭散列与开散列实现全解析
c++·哈希算法
眠りたいです44 分钟前
现代C++:C++11并发支持库
开发语言·c++·多线程·c++11·c++并发支持库
小灰灰搞电子1 小时前
Rust可以取代C++么?
开发语言·c++·rust
Swizard1 小时前
别再只会算直线距离了!用“马氏距离”揪出那个伪装的数据“卧底”
python·算法·ai
flashlight_hi1 小时前
LeetCode 分类刷题:199. 二叉树的右视图
javascript·算法·leetcode