LLM - 词表示和语言模型

一. 词的相似度表示

(1): 用一系列与该词相关的词来表示

(2): 把每个词表示一个独立的符号(one hot)

(3): 利用该词上下文的词来表示该词

(3): 建立一个低维度的向量空间,用深度学习方法将该词映射到这个空间里(Word Embedding)

二:语言模型

(1): 根据前面的词序列,预测下一个词出现的概率

(2): 根据一个已经生成的词的序列,判断是合法句子的概率

(3): 联合概率和条件概率的关系

(4): 语言模型,一个句子联合的概率等于它里面的每个词基于它前面出现词的条件概率乘积

(5): N-gram Model

(6):Neural Language Model , 比如要预测下一个词出现的概率,就要对前文出现的词表示成向量, 把向量拼成一起形成一个上下文向量,然后经过一个非线性转换,然后就可以用这个向量预测下一个词到底是什么。

相关推荐
zzc921几秒前
MATLAB仿真生成无线通信网络拓扑推理数据集
开发语言·网络·数据库·人工智能·python·深度学习·matlab
点赋科技1 分钟前
沙市区举办资本市场赋能培训会 点赋科技分享智能消费新实践
大数据·人工智能
HeteroCat8 分钟前
一周年工作总结:做了一年的AI工作我都干了什么?
人工智能
YSGZJJ22 分钟前
股指期货技术分析与短线操作方法介绍
大数据·人工智能
Guheyunyi31 分钟前
监测预警系统重塑隧道安全新范式
大数据·运维·人工智能·科技·安全
码码哈哈爱分享32 分钟前
[特殊字符] Whisper 模型介绍(OpenAI 语音识别系统)
人工智能·whisper·语音识别
郄堃Deep Traffic38 分钟前
机器学习+城市规划第十三期:XGBoost的地理加权改进,利用树模型实现更精准的地理加权回归
人工智能·机器学习·回归·城市规划
Lucky-Niu38 分钟前
解决transformers.adapters import AdapterConfig 报错的问题
人工智能·深度学习
FserSuN43 分钟前
Prompt工程学习之思维树(TOT)
人工智能·学习·prompt