RAG技术知识笔记

RAG(Retrieval-Augmented Generation)技术

介绍

Retrieval-Augmented Generation(RAG)是一种将信息检索(IR)与自然语言生成(NLG)相结合的技术,用于构建具有增强回答能力的问答系统和对话系统。RAG模型通过检索相关文档来增强生成的回答,从而提供更准确和详细的响应。

知识点总结

1. RAG 的工作原理

RAG模型包括两个主要组件:

  • 检索模块:从大型文档集合中检索与输入查询相关的文档。
  • 生成模块:使用检索到的文档生成回答。

这两个模块协同工作,使得RAG模型能够生成基于更多上下文信息的回答。

2. 主要组件

2.1 检索模块
  • Document Retriever:这是RAG的第一部分,它从文档集合中检索出与查询最相关的文档。常用的检索方法包括TF-IDF、BM25以及基于深度学习的检索模型(如DPR, Dense Passage Retriever)。
2.2 生成模块
  • Language Generator:这是RAG的第二部分,它利用从检索模块获得的相关文档生成回答。通常使用预训练的生成模型(如BERT, GPT-3)。

3. 模型架构

RAG的架构通常如下:

  1. 输入查询
  2. 检索模块从文档库中检索相关文档
  3. 将检索到的文档与输入查询一起输入生成模块
  4. 生成模块生成基于查询和文档的回答

4. 训练过程

RAG的训练过程包括两个阶段:

  • 预训练:检索模块和生成模块分别进行预训练。检索模块可以使用无监督学习方法,而生成模块通常使用大规模语料库进行语言建模训练。
  • 联合微调:将检索模块和生成模块结合在一起进行联合微调,以优化整体系统性能。

5. 优势

  • 上下文增强:通过检索相关文档,RAG能够提供更丰富的上下文信息,生成更准确和详细的回答。
  • 灵活性:RAG模型可以适用于各种任务,包括问答、对话生成和文档摘要。
  • 扩展性:可以通过增加文档库的规模来扩展模型的知识范围。

参考资料和网站

  1. Hugging Face RAG

    • Hugging Face提供了RAG模型的详细文档和实现,适合了解和使用RAG模型的具体实现。
  2. DPR: Dense Passage Retrieval

    • Facebook Research的Dense Passage Retrieval (DPR)是RAG的一个关键组件,用于高效的文档检索。
  3. OpenAI GPT-3

    • OpenAI的GPT-3模型是常用的生成模块之一,适合了解生成模型的具体实现和应用。
  4. BERT

    • Google Research的BERT模型是另一种常用的生成模块,提供了强大的自然语言理解能力。
相关推荐
正义的彬彬侠12 分钟前
CatBoost 中对分类特征进行目标变量统计编码 公式解析
人工智能·机器学习·集成学习·boosting·catboost
字节跳动数据平台16 分钟前
火山引擎 VeDI 平台以 AIGC 技术,助力企业提效营销、快速增长
人工智能
Chef_Chen30 分钟前
从0开始学习机器学习--Day22--优化总结以及误差作业(上)
人工智能·学习·机器学习
Mr.简锋35 分钟前
opencv常用api
人工智能·opencv·计算机视觉
DevinLGT1 小时前
6Pin Type-C Pin脚定义:【图文讲解】
人工智能·单片机·嵌入式硬件
宋一诺331 小时前
机器学习—高级优化方法
人工智能·机器学习
龙的爹23331 小时前
论文 | The Capacity for Moral Self-Correction in LargeLanguage Models
人工智能·深度学习·机器学习·语言模型·自然语言处理·prompt
Mr.简锋1 小时前
opencv视频读写
人工智能·opencv·音视频
Baihai_IDP1 小时前
「混合专家模型」可视化指南:A Visual Guide to MoE
人工智能·llm·aigc
寰宇视讯2 小时前
“津彩嘉年,洽通天下” 2024中国天津投资贸易洽谈会火热启动 首届津彩生活嘉年华重磅来袭!
大数据·人工智能·生活