RAG技术知识笔记

RAG(Retrieval-Augmented Generation)技术

介绍

Retrieval-Augmented Generation(RAG)是一种将信息检索(IR)与自然语言生成(NLG)相结合的技术,用于构建具有增强回答能力的问答系统和对话系统。RAG模型通过检索相关文档来增强生成的回答,从而提供更准确和详细的响应。

知识点总结

1. RAG 的工作原理

RAG模型包括两个主要组件:

  • 检索模块:从大型文档集合中检索与输入查询相关的文档。
  • 生成模块:使用检索到的文档生成回答。

这两个模块协同工作,使得RAG模型能够生成基于更多上下文信息的回答。

2. 主要组件

2.1 检索模块
  • Document Retriever:这是RAG的第一部分,它从文档集合中检索出与查询最相关的文档。常用的检索方法包括TF-IDF、BM25以及基于深度学习的检索模型(如DPR, Dense Passage Retriever)。
2.2 生成模块
  • Language Generator:这是RAG的第二部分,它利用从检索模块获得的相关文档生成回答。通常使用预训练的生成模型(如BERT, GPT-3)。

3. 模型架构

RAG的架构通常如下:

  1. 输入查询
  2. 检索模块从文档库中检索相关文档
  3. 将检索到的文档与输入查询一起输入生成模块
  4. 生成模块生成基于查询和文档的回答

4. 训练过程

RAG的训练过程包括两个阶段:

  • 预训练:检索模块和生成模块分别进行预训练。检索模块可以使用无监督学习方法,而生成模块通常使用大规模语料库进行语言建模训练。
  • 联合微调:将检索模块和生成模块结合在一起进行联合微调,以优化整体系统性能。

5. 优势

  • 上下文增强:通过检索相关文档,RAG能够提供更丰富的上下文信息,生成更准确和详细的回答。
  • 灵活性:RAG模型可以适用于各种任务,包括问答、对话生成和文档摘要。
  • 扩展性:可以通过增加文档库的规模来扩展模型的知识范围。

参考资料和网站

  1. Hugging Face RAG

    • Hugging Face提供了RAG模型的详细文档和实现,适合了解和使用RAG模型的具体实现。
  2. DPR: Dense Passage Retrieval

    • Facebook Research的Dense Passage Retrieval (DPR)是RAG的一个关键组件,用于高效的文档检索。
  3. OpenAI GPT-3

    • OpenAI的GPT-3模型是常用的生成模块之一,适合了解生成模型的具体实现和应用。
  4. BERT

    • Google Research的BERT模型是另一种常用的生成模块,提供了强大的自然语言理解能力。
相关推荐
終不似少年遊*12 分钟前
【从基础到模型网络】深度学习-语义分割-ROI
人工智能·深度学习·卷积神经网络·语义分割·fcn·roi
Cchaofan12 分钟前
lesson01-PyTorch初见(理论+代码实战)
人工智能·pytorch·python
小袁拒绝摆烂34 分钟前
OpenCV-几何变化和图像形态学
人工智能·opencv·计算机视觉
海棠蚀omo39 分钟前
C++笔记-红黑树
开发语言·c++·笔记
摆烂仙君1 小时前
南京邮电大学金工实习答案
人工智能·深度学习·aigc
视觉语言导航1 小时前
中科院自动化研究所通用空中任务无人机!基于大模型的通用任务执行与自主飞行
人工智能·深度学习·无人机·具身智能
moonsims1 小时前
道通龙鱼系列-混合翼无人机:垂直起降+长时续航
人工智能·无人机
MasonYyp1 小时前
简单使用Slidev和PPTist
语言模型
视觉语言导航1 小时前
南航无人机大规模户外环境视觉导航框架!SM-CERL:基于语义地图与认知逃逸强化学习的无人机户外视觉导航
人工智能·深度学习·无人机·具身智能
学算法的程霖1 小时前
CVPR2025 | 首个多光谱无人机单目标跟踪大规模数据集与统一框架, 数据可直接下载
人工智能·深度学习·目标检测·机器学习·计算机视觉·目标跟踪·研究生