RAG技术知识笔记

RAG(Retrieval-Augmented Generation)技术

介绍

Retrieval-Augmented Generation(RAG)是一种将信息检索(IR)与自然语言生成(NLG)相结合的技术,用于构建具有增强回答能力的问答系统和对话系统。RAG模型通过检索相关文档来增强生成的回答,从而提供更准确和详细的响应。

知识点总结

1. RAG 的工作原理

RAG模型包括两个主要组件:

  • 检索模块:从大型文档集合中检索与输入查询相关的文档。
  • 生成模块:使用检索到的文档生成回答。

这两个模块协同工作,使得RAG模型能够生成基于更多上下文信息的回答。

2. 主要组件

2.1 检索模块
  • Document Retriever:这是RAG的第一部分,它从文档集合中检索出与查询最相关的文档。常用的检索方法包括TF-IDF、BM25以及基于深度学习的检索模型(如DPR, Dense Passage Retriever)。
2.2 生成模块
  • Language Generator:这是RAG的第二部分,它利用从检索模块获得的相关文档生成回答。通常使用预训练的生成模型(如BERT, GPT-3)。

3. 模型架构

RAG的架构通常如下:

  1. 输入查询
  2. 检索模块从文档库中检索相关文档
  3. 将检索到的文档与输入查询一起输入生成模块
  4. 生成模块生成基于查询和文档的回答

4. 训练过程

RAG的训练过程包括两个阶段:

  • 预训练:检索模块和生成模块分别进行预训练。检索模块可以使用无监督学习方法,而生成模块通常使用大规模语料库进行语言建模训练。
  • 联合微调:将检索模块和生成模块结合在一起进行联合微调,以优化整体系统性能。

5. 优势

  • 上下文增强:通过检索相关文档,RAG能够提供更丰富的上下文信息,生成更准确和详细的回答。
  • 灵活性:RAG模型可以适用于各种任务,包括问答、对话生成和文档摘要。
  • 扩展性:可以通过增加文档库的规模来扩展模型的知识范围。

参考资料和网站

  1. Hugging Face RAG

    • Hugging Face提供了RAG模型的详细文档和实现,适合了解和使用RAG模型的具体实现。
  2. DPR: Dense Passage Retrieval

    • Facebook Research的Dense Passage Retrieval (DPR)是RAG的一个关键组件,用于高效的文档检索。
  3. OpenAI GPT-3

    • OpenAI的GPT-3模型是常用的生成模块之一,适合了解生成模型的具体实现和应用。
  4. BERT

    • Google Research的BERT模型是另一种常用的生成模块,提供了强大的自然语言理解能力。
相关推荐
小深ai硬件分享28 分钟前
ChatGPT革命升级!o3-pro模型重磅发布:开启AI推理新纪元
运维·服务器·人工智能·深度学习
东临碣石8240 分钟前
【AI论文】利用自注意力机制实现大型语言模型(LLMs)中依赖于输入的软提示
人工智能·深度学习·语言模型
军军君012 小时前
基于Springboot+UniApp+Ai实现模拟面试小工具一:系统需求分析及设计
前端·vue.js·人工智能·spring boot·后端·uni-app·node.js
rufeike5 小时前
Redis学习笔记
redis·笔记·学习
科技小E5 小时前
睡岗检测算法AI智能分析网关V4全场景智能守护,筑牢安全效率防线
网络·人工智能·安全
视频砖家6 小时前
数字化动态ID随机水印和ID跑马灯实现教育视频防录屏
人工智能·视频加密·用户id跑马灯·视频防下载·数字化动态id随机水印·保利威加密
晨曦backend8 小时前
Vim 替换命令完整学习笔记
笔记·学习·vim
struggle20259 小时前
DeepSpeed 是一个深度学习优化库,使分布式训练和推理变得简单、高效和有效
人工智能·深度学习
猎嘤一号9 小时前
使用 PyTorch 和 TensorBoard 实时可视化模型训练
人工智能·pytorch·python
蒙奇D索大9 小时前
【11408学习记录】[特殊字符] 速解命题核心!考研数学线性代数:4类行列式满分技巧(含秒杀公式)
笔记·学习·线性代数·考研·改行学it