【Elasticsearch】Elasticsearch倒排索引详解

文章目录

📑引言

Elasticsearch是一个基于Lucene的分布式搜索引擎,广泛应用于全文搜索、日志分析和实时数据分析等领域。其核心优势在于其强大的搜索性能,而这种性能的基础之一就是倒排索引(Inverted Index)。本文将详细介绍Elasticsearch中的倒排索引,帮助读者深入理解其原理、结构及应用。

一、倒排索引简介

倒排索引是全文搜索引擎的核心数据结构,其主要作用是从文档中提取关键词,并建立关键词到文档的映射关系。这种结构与传统的正排索引(即文档到关键词的映射)相反,因此称为倒排索引。

在倒排索引中,每个关键词都关联着包含该关键词的文档列表,这使得搜索操作能够迅速定位包含特定关键词的文档,从而大幅提高查询效率。

二、倒排索引的基本结构

倒排索引的基本结构包括以下几个部分:

  1. 词典(Dictionary):包含所有在文档集中出现的关键词。
  2. 倒排列表(Inverted List):对于每个关键词,记录包含该关键词的文档ID列表及其在文档中的位置信息。

举一个简单的例子:

假设我们有以下三个文档:

  • 文档1:"Elasticsearch is a powerful search engine"
  • 文档2:"Elasticsearch uses inverted index"
  • 文档3:"Search engines use indexes"

构建倒排索引的步骤如下:

  1. 词条化(Tokenization):将文档拆分为单词,并进行规范化处理(如转小写、去除停用词等)。
  2. 建立词典:提取所有文档中的唯一单词。
  3. 创建倒排列表:记录每个单词在各个文档中的出现位置。

结果如下:

  • elasticsearch -> {1, 2}
  • is -> {1}
  • a -> {1}
  • powerful -> {1}
  • search -> {1, 3}
  • engine -> {1}
  • uses -> {2}
  • inverted -> {2}
  • index -> {2}
  • engines -> {3}
  • use -> {3}
  • indexes -> {3}

三、Elasticsearch中的倒排索引

3.1 索引和文档

在Elasticsearch中,数据以索引(Index)的形式存储,每个索引包含多个文档(Document)。每个文档是一个JSON对象,包含多个字段(Field),每个字段都有相应的值。

3.2 创建倒排索引

当一个文档被索引时,Elasticsearch会对文档进行分析(Analyze),将其分解为多个词条(Term)。分析过程包括分词(Tokenization)、词干提取(Stemming)和去除停用词(Stop Word Removal)等步骤。处理后的词条将被添加到倒排索引中。

3.3 倒排索引的存储结构

Elasticsearch基于Apache Lucene构建,Lucene使用了一种高效的倒排索引存储结构。每个索引由多个分片(Shard)组成,每个分片是一个Lucene索引。在每个Lucene索引中,倒排索引以段(Segment)形式存储。段是不可变的文件集合,当有新的文档添加时,Lucene会创建新的段,并定期进行段合并(Segment Merging)以减少文件数量和提高查询性能。

3.4 词典和倒排列表的优化

为了提高查询效率,Lucene对词典和倒排列表进行了多种优化:

  1. 跳表(Skip List):在倒排列表中引入跳表结构,允许快速跳转到指定位置,加速查询速度。
  2. 前缀压缩(Prefix Compression):对词典中的相邻词条进行前缀压缩,减少存储空间。
  3. 块索引(Block Indexing):将倒排列表分成固定大小的块,每个块包含多个文档ID。查询时,可以快速定位到包含目标文档ID的块,从而减少遍历的时间。

四、倒排索引的查询过程

4.1 过程

当用户发起搜索请求时,Elasticsearch会根据查询条件在倒排索引中查找匹配的文档。以关键词查询为例,查询过程如下:

  1. 解析查询:将用户输入的查询字符串解析为关键词列表。
  2. 查找词典:在倒排索引的词典中查找每个关键词,获取对应的倒排列表。
  3. 合并结果:根据倒排列表合并结果,生成匹配文档的列表。
  4. 计算评分:对匹配的文档进行相关性评分,排序后返回给用户。

4.2 示例

假设我们要搜索关键词"Elasticsearch search engine",查询过程如下:

  1. 解析查询:["elasticsearch", "search", "engine"]
  2. 查找词典:
    • elasticsearch -> {1, 2}
    • search -> {1, 3}
    • engine -> {1}
  3. 合并结果:文档1包含所有关键词,文档2和文档3分别包含部分关键词。
  4. 计算评分:根据文档与查询的匹配度进行评分,假设文档1得分最高,则返回文档1。

五、倒排索引的优缺点

5.1 优点

  1. 高效的关键词搜索:倒排索引允许快速查找包含特定关键词的文档,极大提高了查询效率。
  2. 可扩展性:通过分片和副本机制,Elasticsearch能够处理大规模数据,并保证高可用性。
  3. 灵活的查询能力:支持多种查询类型,如布尔查询、范围查询、模糊查询等,满足不同应用需求。

5.2 缺点

  1. 存储空间占用较大:倒排索引需要存储词典和倒排列表,可能占用较多存储空间,尤其是处理大规模文本数据时。
  2. 实时性较弱:由于倒排索引的构建和更新需要一定时间,可能无法满足高实时性要求的应用场景。

六、倒排索引在实际应用中的优化

6.1 分析器配置

Elasticsearch提供多种内置分析器,如标准分析器(Standard Analyzer)、简洁分析器(Simple Analyzer)等。用户可以根据实际需求选择合适的分析器,并进行定制化配置,如添加同义词过滤器(Synonym Filter)等。

6.2 分片和副本

通过合理配置分片(Shard)和副本(Replica)数量,可以提高Elasticsearch集群的查询性能和容错能力。分片允许将数据分布到多个节点上,副本提供数据冗余以应对节点故障。

6.3 缓存机制

Elasticsearch支持多种缓存机制,如查询缓存(Query Cache)、过滤器缓存(Filter Cache)等。合理利用缓存可以减少磁盘I/O,提高查询性能。

6.4 数据分层存储

对于大规模数据,可以采用冷热分离存储策略,将近期活跃数据存储在高性能存储介质上,将历史数据存储在低成本存储介质上,降低存储成本的同时保证查询性能。

相关推荐
Elastic 中国社区官方博客1 小时前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
掘金-我是哪吒1 小时前
微服务mysql,redis,elasticsearch, kibana,cassandra,mongodb, kafka
redis·mysql·mongodb·elasticsearch·微服务
Lovely_red_scarf1 小时前
Jenkins系列
jenkins
Aloudata2 小时前
从Apache Atlas到Aloudata BIG,数据血缘解析有何改变?
大数据·apache·数据血缘·主动元数据·数据链路
水豚AI课代表2 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
程序员勋勋3 小时前
【自动化测试】如何在jenkins中搭建allure
职场和发展·jenkins·测试覆盖率
研究是为了理解3 小时前
Git Bash 常用命令
git·elasticsearch·bash
拓端研究室TRL5 小时前
【梯度提升专题】XGBoost、Adaboost、CatBoost预测合集:抗乳腺癌药物优化、信贷风控、比特币应用|附数据代码...
大数据
黄焖鸡能干四碗5 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
编码小袁5 小时前
探索数据科学与大数据技术专业本科生的广阔就业前景
大数据