[NLP Begin] Classical NLP Methods - HMM

文章目录

  • [Hidden Markov Models](#Hidden Markov Models)
    • [Initial State Probabilities](#Initial State Probabilities)
    • [Hidden state probabilities](#Hidden state probabilities)
    • [Emission probabilities](#Emission probabilities)
  • 参考

Hidden Markov Models

教材上给出了一个例子:

Initial State Probabilities

初始概率,举个例子:

Noun (N): 0.3

Verb (V): 0.2

Adjective (Adj): 0.5

Hidden state probabilities

From/To N V Adj
N 0.1 0.6 0.3
V 0.4 0.1 0.5
Adj 0.7 0.2 0.1

"众所周知"的规律,比如一个形容词后面大概率跟着一个名词;

Emission probabilities

Word N V Adj
that 0.1 0.1 0.8
person 0.8 0.1 0.1
is 0.1 0.8 0.1
great 0.1 0.1 0.8
running 0.1 0.8 0.1

比如that很大概率是一个形容词,有0.8这么大的概率;

开始计算,第一个单词是that

  • 它的初始概率如下:
    Noun (N): 0.3
    Verb (V): 0.2
    Adjective (Adj): 0.5
  • 发射概率如下:
    Noun (N) : 0.1
    Verb (V) : 0.2
    Adjective (Adj) : 0.5
  • 计算过程如下:
    For Noun : 0.3 × 0.1 = 0.03 0.3 \times 0.1 = 0.03 0.3×0.1=0.03
    For Verb : 0.2 × 0.1 = 0.02 0.2 \times 0.1 = 0.02 0.2×0.1=0.02
    For Adjective : 0.5 × 0.8 = 0.4 0.5 \times 0.8 = 0.4 0.5×0.8=0.4
    发现概率最大的是Adj,所以预测为Adj形容词;

接下来就可以继续接下里的过程,对接下来的每一个单词而言:

  • 该单词的某个tagemission probability
  • 从上一个被选择的tag到当前被选择tagtransistion probability
  • 将这些概率相乘,并且选择概率最高的tag
    到达最后一个单词之后,再回头来处理;
    假设ThattagAdj,再寻找persontag
    假设transition probabilities如下:
    Adj -> N : 0.7,
    Adj -> V : 0.2,
    Adj -> Adj : 0.1,
    person的emission probabilities:
    N : 0.8,
    V : 0.1,
    Adj : 0.1,
    相乘之后比较结果,预测为N的概率最大: 0.7 × 0.8 = 0.56 0.7 \times 0.8 = 0.56 0.7×0.8=0.56;

参考

Classical NLP Methods

相关推荐
清铎1 天前
大模型训练_week3_day15_Llama概念_《穷途末路》
前端·javascript·人工智能·深度学习·自然语言处理·easyui
码农三叔1 天前
(1-2)人形机器人的发展历史、趋势与应用场景:未来趋势与行业需求
人工智能·microsoft·机器人
与光同尘 大道至简1 天前
ESP32 小智 AI 机器人入门教程从原理到实现(自己云端部署)
人工智能·python·单片机·机器人·github·人机交互·visual studio
OJAC1111 天前
当DeepSeek V4遇见近屿智能:一场AI进化的叙事正在展开
人工智能·深度学习·机器学习
xiaozhazha_1 天前
制造业ERP系统选型实战:快鹭云如何用AI+低代码破解库存管理难题
人工智能·低代码·rxjava
囊中之锥.1 天前
《从零到实战:基于 PyTorch 的手写数字识别完整流程解析》
人工智能·pytorch·python
编码小哥1 天前
OpenCV背景减法:视频中的运动物体检测
人工智能·opencv·音视频
AI殉道师1 天前
Vercel 重磅发布 agent-browser:AI Agent 浏览器自动化的新纪元来了
运维·人工智能·自动化
m0_564914921 天前
Deepseek论文深度解读--“条件记忆”模块(Engram):查算分离开启LLM双稀疏轴时代
人工智能