[NLP Begin] Classical NLP Methods - HMM

文章目录

  • [Hidden Markov Models](#Hidden Markov Models)
    • [Initial State Probabilities](#Initial State Probabilities)
    • [Hidden state probabilities](#Hidden state probabilities)
    • [Emission probabilities](#Emission probabilities)
  • 参考

Hidden Markov Models

教材上给出了一个例子:

Initial State Probabilities

初始概率,举个例子:

Noun (N): 0.3

Verb (V): 0.2

Adjective (Adj): 0.5

Hidden state probabilities

From/To N V Adj
N 0.1 0.6 0.3
V 0.4 0.1 0.5
Adj 0.7 0.2 0.1

"众所周知"的规律,比如一个形容词后面大概率跟着一个名词;

Emission probabilities

Word N V Adj
that 0.1 0.1 0.8
person 0.8 0.1 0.1
is 0.1 0.8 0.1
great 0.1 0.1 0.8
running 0.1 0.8 0.1

比如that很大概率是一个形容词,有0.8这么大的概率;

开始计算,第一个单词是that

  • 它的初始概率如下:
    Noun (N): 0.3
    Verb (V): 0.2
    Adjective (Adj): 0.5
  • 发射概率如下:
    Noun (N) : 0.1
    Verb (V) : 0.2
    Adjective (Adj) : 0.5
  • 计算过程如下:
    For Noun : 0.3 × 0.1 = 0.03 0.3 \times 0.1 = 0.03 0.3×0.1=0.03
    For Verb : 0.2 × 0.1 = 0.02 0.2 \times 0.1 = 0.02 0.2×0.1=0.02
    For Adjective : 0.5 × 0.8 = 0.4 0.5 \times 0.8 = 0.4 0.5×0.8=0.4
    发现概率最大的是Adj,所以预测为Adj形容词;

接下来就可以继续接下里的过程,对接下来的每一个单词而言:

  • 该单词的某个tagemission probability
  • 从上一个被选择的tag到当前被选择tagtransistion probability
  • 将这些概率相乘,并且选择概率最高的tag
    到达最后一个单词之后,再回头来处理;
    假设ThattagAdj,再寻找persontag
    假设transition probabilities如下:
    Adj -> N : 0.7,
    Adj -> V : 0.2,
    Adj -> Adj : 0.1,
    person的emission probabilities:
    N : 0.8,
    V : 0.1,
    Adj : 0.1,
    相乘之后比较结果,预测为N的概率最大: 0.7 × 0.8 = 0.56 0.7 \times 0.8 = 0.56 0.7×0.8=0.56;

参考

Classical NLP Methods

相关推荐
Work(沉淀版)1 小时前
DAY 40
人工智能·深度学习·机器学习
蓦然回首却已人去楼空2 小时前
Build a Large Language Model (From Scratch) 序章
人工智能·语言模型·自然语言处理
CM莫问2 小时前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
拾忆-eleven2 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5163 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
要努力啊啊啊3 小时前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
mzlogin5 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮6 小时前
知识图谱技术概述
大数据·人工智能·知识图谱
就是有点傻6 小时前
VM图像处理之图像二值化
图像处理·人工智能·计算机视觉
行云流水剑6 小时前
【学习记录】深入解析 AI 交互中的五大核心概念:Prompt、Agent、MCP、Function Calling 与 Tools
人工智能·学习·交互