[NLP Begin] Classical NLP Methods - HMM

文章目录

  • [Hidden Markov Models](#Hidden Markov Models)
    • [Initial State Probabilities](#Initial State Probabilities)
    • [Hidden state probabilities](#Hidden state probabilities)
    • [Emission probabilities](#Emission probabilities)
  • 参考

Hidden Markov Models

教材上给出了一个例子:

Initial State Probabilities

初始概率,举个例子:

Noun (N): 0.3

Verb (V): 0.2

Adjective (Adj): 0.5

Hidden state probabilities

From/To N V Adj
N 0.1 0.6 0.3
V 0.4 0.1 0.5
Adj 0.7 0.2 0.1

"众所周知"的规律,比如一个形容词后面大概率跟着一个名词;

Emission probabilities

Word N V Adj
that 0.1 0.1 0.8
person 0.8 0.1 0.1
is 0.1 0.8 0.1
great 0.1 0.1 0.8
running 0.1 0.8 0.1

比如that很大概率是一个形容词,有0.8这么大的概率;

开始计算,第一个单词是that

  • 它的初始概率如下:
    Noun (N): 0.3
    Verb (V): 0.2
    Adjective (Adj): 0.5
  • 发射概率如下:
    Noun (N) : 0.1
    Verb (V) : 0.2
    Adjective (Adj) : 0.5
  • 计算过程如下:
    For Noun : 0.3 × 0.1 = 0.03 0.3 \times 0.1 = 0.03 0.3×0.1=0.03
    For Verb : 0.2 × 0.1 = 0.02 0.2 \times 0.1 = 0.02 0.2×0.1=0.02
    For Adjective : 0.5 × 0.8 = 0.4 0.5 \times 0.8 = 0.4 0.5×0.8=0.4
    发现概率最大的是Adj,所以预测为Adj形容词;

接下来就可以继续接下里的过程,对接下来的每一个单词而言:

  • 该单词的某个tagemission probability
  • 从上一个被选择的tag到当前被选择tagtransistion probability
  • 将这些概率相乘,并且选择概率最高的tag
    到达最后一个单词之后,再回头来处理;
    假设ThattagAdj,再寻找persontag
    假设transition probabilities如下:
    Adj -> N : 0.7,
    Adj -> V : 0.2,
    Adj -> Adj : 0.1,
    person的emission probabilities:
    N : 0.8,
    V : 0.1,
    Adj : 0.1,
    相乘之后比较结果,预测为N的概率最大: 0.7 × 0.8 = 0.56 0.7 \times 0.8 = 0.56 0.7×0.8=0.56;

参考

Classical NLP Methods

相关推荐
IT_陈寒13 分钟前
JavaScript性能优化:10个V8引擎隐藏技巧让你的代码快30%
前端·人工智能·后端
Dev7z26 分钟前
基于图像处理技术的智能答题卡识别与评分系统设计与实现
图像处理·人工智能
掘金安东尼36 分钟前
本地模型 + 云端模型的 Hybrid Inference 架构设计:下一代智能系统的底层范式
人工智能
强盛小灵通专卖员37 分钟前
煤矿传送带异物检测:深度学习引领煤矿安全新革命!
人工智能·目标检测·sci·研究生·煤矿安全·延毕·传送带
学历真的很重要1 小时前
PyTorch 零基础入门:从张量到 GPU 加速完全指南
人工智能·pytorch·后端·深度学习·语言模型·职场和发展
mit6.8241 小时前
[Column] Perplexity 如何构建 AI 版 Google | 模型无关架构 | Vespa AI检索
人工智能
xier_ran1 小时前
深度学习:梯度检验(Gradient Checking)
人工智能·深度学习·梯度检验
尼古拉斯·纯情暖男·天真·阿玮1 小时前
基于卷积神经网络的手写数字识别
人工智能·神经网络·cnn
2401_841495641 小时前
MoE算法深度解析:从理论架构到行业实践
人工智能·深度学习·机器学习·自然语言处理·大语言模型·moe·混合专家模型
kanimito1 小时前
大语言模型入门指南:从科普到实战的技术笔记(2)
人工智能·笔记·语言模型