[NLP Begin] Classical NLP Methods - HMM

文章目录

  • [Hidden Markov Models](#Hidden Markov Models)
    • [Initial State Probabilities](#Initial State Probabilities)
    • [Hidden state probabilities](#Hidden state probabilities)
    • [Emission probabilities](#Emission probabilities)
  • 参考

Hidden Markov Models

教材上给出了一个例子:

Initial State Probabilities

初始概率,举个例子:

Noun (N): 0.3

Verb (V): 0.2

Adjective (Adj): 0.5

Hidden state probabilities

From/To N V Adj
N 0.1 0.6 0.3
V 0.4 0.1 0.5
Adj 0.7 0.2 0.1

"众所周知"的规律,比如一个形容词后面大概率跟着一个名词;

Emission probabilities

Word N V Adj
that 0.1 0.1 0.8
person 0.8 0.1 0.1
is 0.1 0.8 0.1
great 0.1 0.1 0.8
running 0.1 0.8 0.1

比如that很大概率是一个形容词,有0.8这么大的概率;

开始计算,第一个单词是that

  • 它的初始概率如下:
    Noun (N): 0.3
    Verb (V): 0.2
    Adjective (Adj): 0.5
  • 发射概率如下:
    Noun (N) : 0.1
    Verb (V) : 0.2
    Adjective (Adj) : 0.5
  • 计算过程如下:
    For Noun : 0.3 × 0.1 = 0.03 0.3 \times 0.1 = 0.03 0.3×0.1=0.03
    For Verb : 0.2 × 0.1 = 0.02 0.2 \times 0.1 = 0.02 0.2×0.1=0.02
    For Adjective : 0.5 × 0.8 = 0.4 0.5 \times 0.8 = 0.4 0.5×0.8=0.4
    发现概率最大的是Adj,所以预测为Adj形容词;

接下来就可以继续接下里的过程,对接下来的每一个单词而言:

  • 该单词的某个tagemission probability
  • 从上一个被选择的tag到当前被选择tagtransistion probability
  • 将这些概率相乘,并且选择概率最高的tag
    到达最后一个单词之后,再回头来处理;
    假设ThattagAdj,再寻找persontag
    假设transition probabilities如下:
    Adj -> N : 0.7,
    Adj -> V : 0.2,
    Adj -> Adj : 0.1,
    person的emission probabilities:
    N : 0.8,
    V : 0.1,
    Adj : 0.1,
    相乘之后比较结果,预测为N的概率最大: 0.7 × 0.8 = 0.56 0.7 \times 0.8 = 0.56 0.7×0.8=0.56;

参考

Classical NLP Methods

相关推荐
aitoolhub2 分钟前
重塑机器人未来:空间智能驱动产业智能化升级
大数据·人工智能·深度学习·机器学习·机器人·aigc
放羊郎3 分钟前
机器人自主导航方案概述
人工智能·算法·机器人·slam·建图
极客BIM工作室11 分钟前
思维链(CoT)的本质:无需架构调整,仅靠提示工程激活大模型推理能力
人工智能·机器学习·架构
放羊郎1 小时前
一款基于鲁班猫和STM32的自主导航实践
人工智能·数码相机·slam·视觉slam·建图·激光slam
eacape1 小时前
什么是RAG?啥又是向量?带你从周杰伦的角度读懂.....
人工智能·agent
GoldenSpider.AI1 小时前
Muon 优化器:通过正交化动量矩阵革命性地加速 AI 大模型训练
人工智能·svd·muon·adamw
三条猫1 小时前
AI 大模型如何给 CAD 3D 模型“建立语义”?
人工智能·机器学习·3d·ai·大模型·cad
bst@微胖子1 小时前
ModelScope微调模型
人工智能·深度学习·bert
再__努力1点1 小时前
【11】特征检测与匹配:AKAZE特征算法详解与实现
人工智能·python·opencv·算法·计算机视觉·特征提取
逸风尊者2 小时前
开发需掌握的知识:高精地图
人工智能·后端·算法