[NLP Begin] Classical NLP Methods - HMM

文章目录

  • [Hidden Markov Models](#Hidden Markov Models)
    • [Initial State Probabilities](#Initial State Probabilities)
    • [Hidden state probabilities](#Hidden state probabilities)
    • [Emission probabilities](#Emission probabilities)
  • 参考

Hidden Markov Models

教材上给出了一个例子:

Initial State Probabilities

初始概率,举个例子:

Noun (N): 0.3

Verb (V): 0.2

Adjective (Adj): 0.5

Hidden state probabilities

From/To N V Adj
N 0.1 0.6 0.3
V 0.4 0.1 0.5
Adj 0.7 0.2 0.1

"众所周知"的规律,比如一个形容词后面大概率跟着一个名词;

Emission probabilities

Word N V Adj
that 0.1 0.1 0.8
person 0.8 0.1 0.1
is 0.1 0.8 0.1
great 0.1 0.1 0.8
running 0.1 0.8 0.1

比如that很大概率是一个形容词,有0.8这么大的概率;

开始计算,第一个单词是that

  • 它的初始概率如下:
    Noun (N): 0.3
    Verb (V): 0.2
    Adjective (Adj): 0.5
  • 发射概率如下:
    Noun (N) : 0.1
    Verb (V) : 0.2
    Adjective (Adj) : 0.5
  • 计算过程如下:
    For Noun : 0.3 × 0.1 = 0.03 0.3 \times 0.1 = 0.03 0.3×0.1=0.03
    For Verb : 0.2 × 0.1 = 0.02 0.2 \times 0.1 = 0.02 0.2×0.1=0.02
    For Adjective : 0.5 × 0.8 = 0.4 0.5 \times 0.8 = 0.4 0.5×0.8=0.4
    发现概率最大的是Adj,所以预测为Adj形容词;

接下来就可以继续接下里的过程,对接下来的每一个单词而言:

  • 该单词的某个tagemission probability
  • 从上一个被选择的tag到当前被选择tagtransistion probability
  • 将这些概率相乘,并且选择概率最高的tag
    到达最后一个单词之后,再回头来处理;
    假设ThattagAdj,再寻找persontag
    假设transition probabilities如下:
    Adj -> N : 0.7,
    Adj -> V : 0.2,
    Adj -> Adj : 0.1,
    person的emission probabilities:
    N : 0.8,
    V : 0.1,
    Adj : 0.1,
    相乘之后比较结果,预测为N的概率最大: 0.7 × 0.8 = 0.56 0.7 \times 0.8 = 0.56 0.7×0.8=0.56;

参考

Classical NLP Methods

相关推荐
hacker7074 分钟前
openGauss 在K12教育场景的数据处理测评:CASE WHEN 实现高效分类
人工智能·分类·数据挖掘
暖光资讯29 分钟前
前行者获2025抖音最具影响力品牌奖,亮相上海ZFX装备前线展,引领外设行业“文化科技”新浪潮
人工智能·科技
guslegend31 分钟前
第3章:SpringAI进阶之会话记忆实战
人工智能
陈橘又青1 小时前
100% AI 写的开源项目三周多已获得 800 star 了
人工智能·后端·ai·restful·数据
中杯可乐多加冰1 小时前
逻辑控制案例详解|基于smardaten实现OA一体化办公系统逻辑交互
人工智能·深度学习·低代码·oa办公·无代码·一体化平台·逻辑控制
IT_陈寒2 小时前
Redis实战:5个高频应用场景下的性能优化技巧,让你的QPS提升50%
前端·人工智能·后端
龙智DevSecOps解决方案2 小时前
Perforce《2025游戏技术现状报告》Part 1:游戏引擎技术的广泛影响以及生成式AI的成熟之路
人工智能·unity·游戏引擎·游戏开发·perforce
大佬,救命!!!2 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置
星空的资源小屋2 小时前
VNote:程序员必备Markdown笔记神器
javascript·人工智能·笔记·django
梵得儿SHI2 小时前
(第七篇)Spring AI 基础入门总结:四层技术栈全景图 + 三大坑根治方案 + RAG 进阶预告
java·人工智能·spring·springai的四大核心能力·向量维度·prompt模板化·向量存储检索