昇思第16天

SSD目标检测

模型简介

SSD (Single Shot MultiBox Detector) 是 Wei Liu 在 ECCV 2016 上提出的一种目标检测算法。使用 Nvidia Titan X 在 VOC 2007 测试集上,SSD 对于输入尺寸 300x300 的网络,达到 74.3% mAP 和 59 FPS;对于 512x512 的网络,达到 76.9% mAP,超越当时最强的 Faster RCNN (73.2% mAP)。

目标检测算法可以分为两种类型:

  1. Two-stage 方法:RCNN 系列,通过算法产生候选框,然后再对这些候选框进行分类和回归。
  2. One-stage 方法:YOLO 和 SSD,直接通过主干网络给出类别位置信息,不需要区域生成。

SSD 采用卷积神经网络进行特征提取,通过多尺度的特征层进行检测输出,预设不同长宽比例的 anchor,每一个输出特征层基于 anchor 预测多个检测框。

模型结构

SSD 采用 VGG16 作为基础模型,然后在其基础上新增了卷积层以获得更多的特征图用于检测。SSD 利用多尺度特征图进行检测,不同于 YOLO,SSD 是通过卷积得到最后的边界框,而 YOLO 通过全连接形式得到一维向量。

模型特点
  • 多尺度检测:浅层检测小目标,深层检测大目标。
  • anchor 策略:预设不同比例的 anchor,进行多框检测。
  • 卷积实现检测:通过卷积层直接输出检测结果。
数据集和预处理

使用 VOC2012 数据集进行训练,进行数据增强和图像预处理,调整图像尺寸并标准化。

模型训练

训练时设置 epoch 次数为 60,batch_size 为 5,图像尺寸为 300x300。使用位置损失函数和置信度损失函数的加权和作为损失函数,优化器为 Momentum,初始学习率为 0.001。每训练 10 个 epoch 保存一次模型。

评估

使用自定义的 eval_net() 类对训练好的模型进行评估,计算在不同 IoU 阈值、area 和 maxDets 设置下的 AP 和 AR。使用 COCO Metrics 类计算 mAP。模型在测试集上的评估指标包括 mAP、IoU 等。

精确率和召回率
  • TP:IoU > 阈值的检测框数量
  • FP:IoU <= 阈值的检测框数量或多余检测框数量
  • FN:未检测到的 GT 数量

AP 和 AR 的计算公式分别为:

  • AP:正样本预测正确结果与正样本预测总结果的比值。
  • AR:正样本预测正确结果与正样本实际数量的比值。
训练输出指标
  • mAP:各类别 AP 的平均值
  • IoU=0.5 的 mAP:反映算法框的位置精准程度
  • AR:检出率,反映模型的检测性能
相关推荐
jndingxin7 分钟前
OpenCV 图形API(63)图像结构分析和形状描述符------计算图像中非零像素的边界框函数boundingRect()
人工智能·opencv·计算机视觉
旧故新长12 分钟前
支持Function Call的本地ollama模型对比评测-》开发代理agent
人工智能·深度学习·机器学习
微学AI24 分钟前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆36 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤39 分钟前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
武汉唯众智创41 分钟前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室
Johny_Zhao1 小时前
MySQL 高可用集群搭建部署
linux·人工智能·mysql·信息安全·云计算·shell·yum源·系统运维·itsm
一只可爱的小猴子1 小时前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
地瓜机器人1 小时前
乐聚机器人与地瓜机器人达成战略合作,联合发布Aelos Embodied具身智能
人工智能·机器人
带娃的IT创业者1 小时前
《AI大模型趣味实战》基于RAG向量数据库的知识库AI问答助手设计与实现
数据库·人工智能