Zynq系列FPGA实现SDI相机编码输出,基于GTX高速接口,提供6套工程源码和技术支持

目录

Zynq系列FPGA实现SDI相机编码输出,基于GTX高速接口,提供6套工程源码和技术支持

1、前言

目前FPGA实现SDI视频编解码有两种方案:一是使用专用编解码芯片,比如典型的接收器GS2971,发送器GS2972,优点是简单,比如GS2971接收器直接将SDI解码为并行的YCrCb422,GS2972发送器直接将并行的YCrCb422编码为SDI视频,缺点是成本较高,可以百度一下GS2971和GS2972的价格;另一种方案是使用FPGA逻辑资源部实现SDI编解码,利用Xilinx系列FPGA的GTP/GTX资源实现解串,利用Xilinx系列FPGA的SMPTE SDI资源实现SDI编解码,优点是合理利用了FPGA资源,GTP/GTX资源不用白不用,缺点是操作难度大一些,对FPGA开发者的技术水平要求较高。有意思的是,这两种方案在本博这里都有对应的解决方案,包括硬件的FPGA开发板、工程源码等等。

工程概述

本设计基于Zynq系列的Zynq7100 FPGA开发板实现SDI相机输出,也就是实现普通Sensor采集转SDI输出,市面上的SDI相机也就是这个原理;理论上输入源可以是多种多样的,取决于你想做的产品,本博主手上只有OV5640摄像头,外加开发板自带了一路HDMI输入接口,所以本设计的Sensor为OV5640摄像头和HDMI,另外,为了照顾收手上没有Sensor或者不是本设计同款Sensor亦或是Sensor方案还未定的情况,本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;

FPGA采集到Sensor图像后,经过Xilinx官方的Video In To AXI4-Stream IP核实现Native视频到 AXI4-Stream视频流的转换,AXI4-Stream视频流是Xilinx推荐的图传数据流形式;然后调用Xilinx官方的VDMA实现图像缓存,缓存介质为PS端DDR3,为了降低延时,VDMA配置为缓存1帧;图像从DDR3中读出后送入ilinx官方的AXI4-Stream To Video Out IP核实现AXI4-Stream视频流到Native视频的转换,即输出带行同步、场同步等同步信号的RGB888视频;然后调用纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现SDI视频编码操作,本工程有HD-SDI和3G-SDI两种编码;然后调用Xilinx官方的GTX高速资源(直接调用原语),实现并行数据到高速串行的转换,本博称之为串化,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;本博客提供6套工程源码,具体如下:

现对上述6套工程源码做如下解释,方便读者理解:

工程源码1

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源为OV5640摄像头或动态彩条,分辨率为1280x720@30Hz,可以通过Sensor模块的顶层参数配置,默认选择Sensor输入;FPGA纯verilog实现的i2c配置模块对摄像头进行初始化配置,并采集摄像头数据以RGB888输出,然后调用Xilinx官方的Video In To AXI4-Stream IP核实现Native视频到 AXI4-Stream视频流的转换;然后调用Xilinx官方的VDMA实现图像缓存,缓存介质为PS端DDR3;图像从DDR3中读出后送入ilinx官方的AXI4-Stream To Video Out IP核实现AXI4-Stream视频流到Native视频的转换;然后调用纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,输出分辨率为1280x720@60Hz,属于HD-SDI标准,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;该工程需要运行Zynq软核;适用于Sensor转SDI输出场景;

工程源码2

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源为OV5640摄像头或动态彩条,分辨率为1280x720@30Hz,可以通过Sensor模块的顶层参数配置,默认选择Sensor输入;FPGA纯verilog实现的i2c配置模块对摄像头进行初始化配置,并采集摄像头数据以RGB888输出,然后调用Xilinx官方的Video In To AXI4-Stream IP核实现Native视频到 AXI4-Stream视频流的转换;然后调用本博主自研的基于HLS实现的图像处理模块对视频进行缩放操作,由1280x720放大到1920x1080;然后调用Xilinx官方的VDMA实现图像缓存,缓存介质为PS端DDR3;图像从DDR3中读出后送入ilinx官方的AXI4-Stream To Video Out IP核实现AXI4-Stream视频流到Native视频的转换;然后调用纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现3G-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,输出分辨率为1920x1080@60Hz,属于3G-SDI标准,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;该工程需要运行Zynq软核;适用于Sensor转SDI输出场景;

工程源码3

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源为板载的HDMI输入接口或动态彩条,分辨率为1280x720@60Hz,使用笔记本电脑接入HDMI输入接口,以模拟输入Sensor;可以通过Sensor模块的顶层参数配置,默认选择Sensor输入;FPGA纯verilog实现的i2c配置模块完成HDMI RX的DDC接口配置,EDID配置为1280x720@60Hz,使用纯VDHL代码实现的HDMI转RGB模块实现输入HDMI视频解码操作,并输出Native的RGB888视频流;然后调用Xilinx官方的Video In To AXI4-Stream IP核实现Native视频到 AXI4-Stream视频流的转换;然后调用Xilinx官方的VDMA实现图像缓存,缓存介质为PS端DDR3;图像从DDR3中读出后送入ilinx官方的AXI4-Stream To Video Out IP核实现AXI4-Stream视频流到Native视频的转换;然后调用纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,输出分辨率为1280x720@60Hz,属于HD-SDI标准,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;该工程需要运行Zynq软核;适用于Sensor转SDI输出场景;

工程源码4

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源为板载的HDMI输入接口或动态彩条,分辨率为1280x720@60Hz,使用笔记本电脑接入HDMI输入接口,以模拟输入Sensor;可以通过Sensor模块的顶层参数配置,默认选择Sensor输入;FPGA纯verilog实现的i2c配置模块完成HDMI RX的DDC接口配置,EDID配置为1280x720@60Hz,使用纯VDHL代码实现的HDMI转RGB模块实现输入HDMI视频解码操作,并输出Native的RGB888视频流;然后调用Xilinx官方的Video In To AXI4-Stream IP核实现Native视频到 AXI4-Stream视频流的转换;然后调用本博主自研的基于HLS实现的图像处理模块对视频进行缩放操作,由1280x720放大到1920x1080;然后调用Xilinx官方的VDMA实现图像缓存,缓存介质为PS端DDR3;图像从DDR3中读出后送入ilinx官方的AXI4-Stream To Video Out IP核实现AXI4-Stream视频流到Native视频的转换;然后调用纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现3G-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,输出分辨率为1920x1080@60Hz,属于3G-SDI标准,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;该工程需要运行Zynq软核;适用于Sensor转SDI输出场景;

工程源码5

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源为板载的HDMI输入接口或动态彩条,分辨率为1920x1080@60Hz,使用笔记本电脑接入HDMI输入接口,以模拟输入Sensor;可以通过Sensor模块的顶层参数配置,默认选择Sensor输入;FPGA纯verilog实现的i2c配置模块完成HDMI RX的DDC接口配置,EDID配置为1920x1080@60Hz,使用纯VDHL代码实现的HDMI转RGB模块实现输入HDMI视频解码操作,并输出Native的RGB888视频流;然后调用Xilinx官方的Video In To AXI4-Stream IP核实现Native视频到 AXI4-Stream视频流的转换;然后调用Xilinx官方的VDMA实现图像缓存,缓存介质为PS端DDR3;图像从DDR3中读出后送入ilinx官方的AXI4-Stream To Video Out IP核实现AXI4-Stream视频流到Native视频的转换;然后调用纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现3G-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,输出分辨率为1920x1080@60Hz,属于3G-SDI标准,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;该工程需要运行Zynq软核;适用于Sensor转SDI输出场景;

工程源码6

开发板FPGA型号为Xilinx-->Xilinx-Zynq7100--xc7z100ffg900-2;输入源为板载的HDMI输入接口或动态彩条,分辨率为1920x1080@60Hz,使用笔记本电脑接入HDMI输入接口,以模拟输入Sensor;可以通过Sensor模块的顶层参数配置,默认选择Sensor输入;FPGA纯verilog实现的i2c配置模块完成HDMI RX的DDC接口配置,EDID配置为1920x1080@60Hz,使用纯VDHL代码实现的HDMI转RGB模块实现输入HDMI视频解码操作,并输出Native的RGB888视频流;然后调用Xilinx官方的Video In To AXI4-Stream IP核实现Native视频到 AXI4-Stream视频流的转换;然后调用本博主自研的基于HLS实现的图像处理模块对视频进行缩放操作,由1920x1080缩小到1280x720;然后调用Xilinx官方的VDMA实现图像缓存,缓存介质为PS端DDR3;图像从DDR3中读出后送入ilinx官方的AXI4-Stream To Video Out IP核实现AXI4-Stream视频流到Native视频的转换;然后调用纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,输出分辨率为1280x720@60Hz,属于HD-SDI标准,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;该工程需要运行Zynq软核;适用于Sensor转SDI输出场景;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

本博已有的 SDI 编解码方案

我的博客主页开设有SDI视频专栏,里面全是FPGA编解码SDI的工程源码及博客介绍;既有基于GS2971/GS2972的SDI编解码,也有基于GTP/GTX资源的SDI编解码;既有HD-SDI、3G-SDI,也有6G-SDI、12G-SDI等;专栏地址链接如下:
点击直接前往

本方案在Xilinx-Kintex7上的应用

本方案在Xilinx-Kintex7上也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

3、详细设计方案

设计原理框图

设计原理框图如下:

输入Sensor之-->OV5640摄像头

输入Sensor是本工程的输入设备,其一为OV5640摄像头,此外本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:

SENSOR_TYPE=0;则输出OV5640摄像头采集的视频;

SENSOR_TYPE=1;则输出动态彩条的视频;

OV5640摄像头需要i2c初始化配置,本设计配置为1280x720@30Hz分辨率,本设计提供纯verilog代码实现的i2c模块实现配置功能;此外,OV5640摄像头还需要图像采集模块实现两个时钟输出一个RGB565的视频转换为一个时钟输出一个RGB888视频,本设计提供纯verilog代码实现的图像采集模块实现配置功能;动态彩条则由FPGA内部逻辑实现,由纯verilog代码编写;将OV5640摄像头配置采集和动态彩条进行代码封装,形成helai_OVsensor.v的顶层模块,整个模块代码架构如下:

输入Sensor之-->HDMI

输入Sensor是本工程的输入设备,其二为板载的HDMI输入接口,使用笔记本电脑接入HDMI输入接口,以模拟输入Sensor;为了支持1080P@60Hz的输入视频,在硬件设计上需要加上驱动芯片,本设计采用TMDS141RHAR,也可采用其他型号,参考原理图如下:

此外本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:

SENSOR_TYPE=0;则输出HDMI接口采集的视频;

SENSOR_TYPE=1;则输出动态彩条的视频;

HDMI输入接口逻辑设计,必须要考虑DDC通信,即通过i2c总线与输入设备协商分辨率,即EDID配置;本设计提供纯verilog代码实现的i2c模块实现EDID配置;此外,TMDS差分视频进入FPGA IO后,需要将其解码为RGB视频,使用纯VDHL代码实现的HDMI转RGB模块实现输入HDMI视频解码操作,并输出Native的RGB888视频流,本博主已将该代码封装为了自定义IP,可在vivado中直接调用,如下:

将HDMI转RGB模块和动态彩条进行代码封装,形成helai_OVsensor.v的顶层模块,整个模块代码架构如下:

HLS图像缩放详解

工程源码2、4、6的图像缩放采用HLS方案C++代码实现,并综合成RTL后封装为IP,可在vivado中调用该IP,关于这个方案详情,请参考我之前的博客,博客链接如下:
点击直接前往

该IP在vivado中的综合资源占用情况如下:

HLS图像缩放需要在SDK中运行驱动和用户程序才能正常工作,我在工程中给出了C语言程序,具体参考工程源码;以工程源码2为例,HLS图像缩放在Block Design设计如下图:

VDMA图像缓存

本设计的视频缓存方案采用Xilinx官方的的VDMA图像缓存架构;缓存介质为PS端DDR3;VDMA使用Xilinx vivado的Block Design设计,以工程源码2为例,如下图:

SDI视频输出架构之-->RGB转BT1120

SDI视频输出架构首先要实现VDMA读出的AXI4-Stream到Native格式的转换,得到RGB888视频后再通过RGB转BT1120实现到BT1120视频的转换,其架构如下:

在SDI输出方式下VGA时序模块的像素时钟由SMPTE SD/HD/3G SDI IP核的发送用户时钟提供,在不同的SDI模式下像素时钟不同,比如在3G-SDI模式下像素时钟为148.5M,在HD-SDI的720P@60Hz模式下像素时钟为74.25M;

在SDI输出方式下需要使用RGB转BT1120模块;RGB转BT1200模块的作用是将用户侧的RGB视频转换为BT1200视频输出给SMPTE SD/HD/3G SDI IP核;RGB转BT1120模块由RGB888转YUV444模块、YUV444转YUV422模块、SDI视频编码模块、数据嵌入模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:

SDI视频输出架构之-->SMPTE SD/HD/3G SDI 视频编码

SMPTE SD/HD/3G SDI IP核是Xilinx系列FPGA特有的用于SDI视频编解码的IP,该IP配置使用非常简单,vivado的UI界面如下:

SMPTE SD/HD/3G SDI IP核必须与GTX配合才能使用,对于SDI视频接收而言,对于SDI视频发送而言,该IP接收来自于用户侧的的BT1120视频数据,然后将BT1120视频编码为SDI视频输出;该方案参考了Xilinx官方的设计;SMPTE SD/HD/3G SDI IP核代码架构如下:

SDI视频输出架构之-->GTX 高速接口串化

本设计使用Xilinx特有的GTX高速信号处理资源实现SDI差分视频信号的串化;对于SDI视频发送而言,GTX起到串化的作用,即将输入的并行的数字信号串化为高速串行的差分信号;GTX的使用一般需要例化GTX IP核,通过vivado的UI界面进行配置,但本设计需要对SD-SDI、HD-SDI、3G-SDI视频进行自动识别和自适应处理,所以需要使得GTX具有动态改变线速率的功能,该功能可通过DRP接口配置,也可通过GTX的rate接口配置,所以不能使用vivado的UI界面进行配置,而是直接例化GTX的GTXE2_CHANNEL和GTXE2_COMMON源语直接使用GTX资源;此外,为了动态配置GTX线速率,还需要GTX控制模块,该模块参考了Xilinx的官方设计方案,具有动态监测SDI模式,动态配置DRP等功能;该方案参考了Xilinx官方的设计;GTX 解串与串化模块代码架构如下:

SDI视频输出架构之-->Gv8500 驱动器

Gv8500芯片实现差分转单端和增强驱动的功能,这里选用Gv8500是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8500驱动器原理图如下:

SDI视频输出架构之-->SDI转HDMI盒子

在SDI输出方式下需要使用到SDI转HDMI盒子,因为我手里的显示器没有SDI接口,只有HDMI接口,为了显示SDI视频,只能这么做,当然,如果你的显示器有SDI接口,则可直接连接显示,我的SDI转HDMI盒子在某宝购买,不到100块;

工程源码架构之-->逻辑设计

本博客提供6套工程源码,以工程源码2为例,vivado Block Design设计如下,其他工程与之类似,Block Design设计为图像缓存架构的部分:

以工程源码2为例,使工程源码架构如下,其他工程与之类似:

工程源码架构之-->SDK软件设计

工程源码PL端时钟由Zynq软核提供,所以需要运行运行SDK以启动Zynq,此外,HLS图像缩放、VDMA等IP核都需要运行软件驱动才能正常工作,SDK软件代码架构如下:

4、工程源码1详解-->OV5640摄像头输入转HD-SDI输出

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入:OV5640摄像头或动态彩条,分辨率1280x720@30Hz;

输出:HD-SDI,分辨率1280x720@60Hz;

缓存方案:Xilinx官方VDMA方案;

缓存介质:PS端DDR3;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现Sensor转SDI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

5、工程源码2详解-->OV5640摄像头输入转3G-SDI输出

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入:OV5640摄像头或动态彩条,分辨率1280x720@30Hz;

输出:3G-SDI,分辨率1920x1080@60Hz;

图像缩放方案:自研基于HLS实现的图像缩放;

图像缩放实例:1280x720放大到1920x1080;

缓存方案:Xilinx官方VDMA方案;

缓存介质:PS端DDR3;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现Sensor转SDI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

6、工程源码3详解-->HDMI(720P)输入转HD-SDI输出

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入:HDMI(笔记本输入模拟Sensor)或动态彩条,分辨率1280x720@60Hz;

输出:HD-SDI,分辨率1280x720@60Hz;

缓存方案:Xilinx官方VDMA方案;

缓存介质:PS端DDR3;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现Sensor转SDI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

7、工程源码4详解-->HDMI(720P)输入转3G-SDI输出

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入:HDMI(笔记本输入模拟Sensor)或动态彩条,分辨率1280x720@60Hz;

输出:3G-SDI,分辨率1920x1080@60Hz;

图像缩放方案:自研基于HLS实现的图像缩放;

图像缩放实例:1280x720放大到1920x1080;

缓存方案:Xilinx官方VDMA方案;

缓存介质:PS端DDR3;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现Sensor转SDI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

8、工程源码5详解-->HDMI(1080P)输入转3G-SDI输出

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入:HDMI(笔记本输入模拟Sensor)或动态彩条,分辨率1920x1080@60Hz;

输出:3G-SDI,分辨率1280x720@60Hz;

缓存方案:Xilinx官方VDMA方案;

缓存介质:PS端DDR3;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现Sensor转SDI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

9、工程源码6详解-->HDMI(1080P)输入转HD-SDI输出

开发板FPGA型号:Xilinx-Zynq7100--xc7z100ffg900-2;

开发环境:Vivado2019.1;

输入:HDMI(笔记本输入模拟Sensor)或动态彩条,分辨率1920x1080@60Hz;

输出:HD-SDI,分辨率1920x1080@60Hz;

图像缩放方案:自研基于HLS实现的图像缩放;

图像缩放实例:1920x1080缩小到1280x720;

缓存方案:Xilinx官方VDMA方案;

缓存介质:PS端DDR3;

工程作用:此工程目的是让读者掌握Zynq系列FPGA实现Sensor转SDI的设计能力,以便能够移植和设计自己的项目;

工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;

工程的资源消耗和功耗如下:

10、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;

2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件-->另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;

3:如果你的vivado版本高于本工程vivado版本,解决如下:

打开工程后会发现IP都被锁住了,如下:

此时需要升级IP,操作如下:

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:


更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;

2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;

3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

11、上板调试验证

准备工作

需要准备的器材如下:

FPGA开发板;

笔记本电脑;

OV5640摄像头或者HDMI输入或者动态彩条;

SDI转HDMI盒子;

HDMI显示器;

我的开发板了连接如下:

输出视频演示

以工程源码1为例,输出如下:

Zynq-SDI-视频发送

12、福利:工程代码的获取

福利:工程代码的获取

代码太大,无法邮箱发送,以某度网盘链接方式发送,

资料获取方式:私,或者文章末尾的V名片。

网盘资料如下:

此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:

相关推荐
HIZYUAN37 分钟前
AGM FPGA如何配置上拉或者下拉电阻
fpga开发
∑狸猫不是猫41 分钟前
(13)CT137A- 简易音乐盒设计
fpga开发
ThreeYear_s7 小时前
基于FPGA 的4位密码锁 矩阵键盘 数码管显示 报警仿真
fpga开发·矩阵·计算机外设
禁默10 小时前
2024年图像处理、多媒体技术与机器学习
图像处理·人工智能·microsoft
Anin蓝天(北京太速科技-陈)13 小时前
252-8路SATAII 6U VPX高速存储模块
fpga开发
发呆小天才O.oᯅ14 小时前
YOLOv8目标检测——详细记录使用OpenCV的DNN模块进行推理部署C++实现
c++·图像处理·人工智能·opencv·yolo·目标检测·dnn
只待花开15 小时前
ROS2 python编写 intel realsense D405相机节点通过launch.py启动多个相机并发送图像话题,基于pyrealsense2库
数码相机
如何学会学习?15 小时前
2. FPGA基础了解--全局网络
fpga开发
Anin蓝天(北京太速科技-陈)15 小时前
271-基于XC7V690T的12路光纤PCIe接口卡
嵌入式硬件·fpga开发
liuming199218 小时前
Halcon中histo_2dim(Operator)算子原理及应用详解
图像处理·人工智能·深度学习·算法·机器学习·计算机视觉·视觉检测