LangChain —— Prompt Templates —— How to use few shot examples in chat models

文章目录

  • 一、概述
  • [二、固定示例 Fixed Example](#二、固定示例 Fixed Example)

一、概述

本指南介绍了如何使用示例输入和输出提示 char model。为模型提供几个这样的例子被称为 few-shotting,这是一种简单而强大的方法来指导生成,在某些情况下可以大大提高模型性能。

对于如何最好地进行 few-shot 提示,似乎没有达成一致意见,最佳提示编译可能会因模型而异。因此,langchain 提供 few-shot 提示模板,如 FewShotChatMessagePromptTemplate,作为一个灵活的起点,我们可以根据需要修改或替换它们

few-shot 提示模板的目标是根据输入动态选择示例,然后在最终提示中格式化示例以提供模型。

注意,以下代码示例仅适用于 chat model,因为 FewShotChatMessagePromptTemplates 旨在输出格式化的 chat message,而不是纯字符串。


二、固定示例 Fixed Example

最基本 (也是最常见) 的 few-shot 提示技术是使用 固定提示示例 。通过这种方式,您可以选择一条链,对其进行评估,并避免在生产中担心额外的 moving parts。

模板的基本组件包括:

  1. examples:要包含在最终提示中的词典示例列表。
  2. example_prompt:通过其 format_messages 方法将每个示例转换为 1条或多条 消息。一个常见的例子是将每个示例转换为一条 human message 和一条 AI message 响应,或者一条 human message 后跟一条 function call message。

下面是一个简单的演示。首先,定义要包含的示例。让我们给 LLM 一个不熟悉的数学运算符,用"🦜"表情符号。如果我们尝试问模型,该运算的结果是什么,这将会失败:

python 复制代码
from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0.0)

model.invoke("What is 2 🦜 9?")
"""
AIMessage(content='The expression "2 🦜 9" is not a standard mathematical operation or equation. It appears to be a combination of the number 2 and the parrot emoji 🦜 followed by the number 9. It does not have a specific mathematical meaning.', response_metadata={'token_usage': {'completion_tokens': 54, 'prompt_tokens': 17, 'total_tokens': 71}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-aad12dda-5c47-4a1e-9949-6fe94e03242a-0', usage_metadata={'input_tokens': 17, 'output_tokens': 54, 'total_tokens': 71})
"""

现在让我们看看如果我们给LLM一些例子来使用会发生什么。我们将在下面定义一些:

python 复制代码
from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate

examples = [
    {"input": "2 🦜 2", "output": "4"},
    {"input": "2 🦜 3", "output": "5"},
]

接下来,将它们组装到 few-shot 提示模板中。

python 复制代码
# This is a prompt template used to format each individual example.
example_prompt = ChatPromptTemplate.from_messages(
    [
        ("human", "{input}"),
        ("ai", "{output}"),
    ]
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
    example_prompt=example_prompt,
    examples=examples,
)

print(few_shot_prompt.invoke({}).to_messages())
"""
[HumanMessage(content='2 🦜 2'), AIMessage(content='4'), HumanMessage(content='2 🦜 3'), AIMessage(content='5')]
"""

最后,我们组装如下所示的最终提示,将 few_shot_prompt 直接传递给 from_messages 工厂方法,并将其与模型一起使用:

python 复制代码
final_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a wondrous wizard of math."),
        few_shot_prompt,
        ("human", "{input}"),
    ]
)

现在让我们问模型最初的问题,看看它是如何做到的:

python 复制代码
from langchain_openai import ChatOpenAI

chain = final_prompt | model

chain.invoke({"input": "What is 2 🦜 9?"})
"""
AIMessage(content='11', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 60, 'total_tokens': 61}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5ec4e051-262f-408e-ad00-3f2ebeb561c3-0', usage_metadata={'input_tokens': 60, 'output_tokens': 1, 'total_tokens': 61})
"""

我们可以看到,模型现在已经从给定的几个热门例子中推断出鹦鹉表情符号意味着添加!

相关推荐
敲键盘的小夜猫7 分钟前
大模型链路调试平台之LangSmith实战指南
python·langchain
深科文库16 小时前
构建 MCP 服务器:第 3 部分 — 添加提示
服务器·python·chatgpt·langchain·prompt·aigc·agi
威化饼的一隅19 小时前
【大模型LLM学习】function call/agent学习记录
langchain·agent·function call·工具调用·意图识别
FserSuN19 小时前
Prompt工程学习之思维树(TOT)
人工智能·学习·prompt
千|寻19 小时前
【画江湖】langchain4j - Java1.8下spring boot集成ollama调用本地大模型之问道系列(第一问)
java·spring boot·后端·langchain
深科文库21 小时前
构建 MCP 服务器:第 4 部分 — 创建工具
python·chatgpt·prompt·aigc·agi·ai-native
幼稚园的山代王1 天前
Prompt Enginering(提示工程)先进技术
java·人工智能·ai·chatgpt·langchain·prompt
ai大师1 天前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
爱喝喜茶爱吃烤冷面的小黑黑2 天前
小黑一层层削苹果皮式大模型应用探索:langchain中智能体思考和执行工具的demo
python·langchain·代理模式
大千AI2 天前
LangChain Core架构解析:模块化设计与LCEL原语实现原理
langchain