GloVe: Global Vectors for Word Representation论文笔记解读

基本信息

作者 Jeffrey Pennington doi 10.3115/v1/D14-1162
发表时间 2014 期刊 EMNLP
网址 https://aclanthology.org/D14-1162.pdf

研究背景

1. What's known 既往研究已证实

全局矩阵分解方法:LSA,考虑整个语料库词频的统计信息得到共现矩阵,通过矩阵分解得到潜在语义信息。【有效地利用了统计信息,但它们在单词类比任务上做得相对较差,这表明向量空间结构不是最优的。】

局部上下文窗口方法:skip-gram (以及cbow)。【在类比任务上做得更好,但它们很少利用语料库的统计数据,因为它们在单独的局部上下文窗口上训练,而不是在全局共出现计数上训练。】

2. What's new 创新点

Glove模型:融合了当时最新的全局矩阵分解方法和局部文本框捕捉方法,即全局词向量表达,利用了全局词词共现矩阵中的非0数据来训练。

3. What's are the implications 意义

这种新的词向量表达方法提高了很多NLP基础任务的准确率。

研究方法

1. GloVe

α 取值为0.75能得到最好的模型效果。

结果与讨论

  1. 该模型训练的高效性,且在语料库较小时,也能取得不错的效果。
  2. 窗口大小逐渐变大,GloVe词向量在语义任务表现最佳。
  3. 同时使用对称上下文对GloVe词向量在各个任务的表现有益处。

个人思考与启发

拓展学习:论文阅读 - Distributed Representations of Words

用来表示 word 的向量被称为 Embedding,因为这个词被嵌入到(embedded)了向量空间中。

重要图

文献中重要的图记录下来

展示了三个不同超参数对最终结果的影响。

第一个是保持窗口对称,且窗口大小固定的情况下,向量维度对最终模型表现的影响。可以看到最初随着维度增加,模型表现也愈佳,但是当维度增加到300以上后,模型表现没有很明显的变化。虽然semantic评估有略微增长,但是维度增加,对资源的消耗也会增加,所以考虑到成本,一般会选择300作为最终的维度。

第二个是指保持窗口对称,维度固定的情况下,窗口大小对模型的影响。

第三个是指窗口不对称,也就是说只考虑前面或者后面的单词,维度固定的情况下,窗口大小对模型的影响。

迭代次数越多越小,效果很稳定。

补充内容:复习word2vec的核心思路

相关推荐
qq_4856689929 分钟前
算法习题--蓝桥杯
算法·职场和发展·蓝桥杯
waves浪游31 分钟前
类和对象(中)
c语言·开发语言·数据结构·c++·算法·链表
做人不要太理性36 分钟前
【算法一周目】滑动窗口(2)
c++·算法·leetcode·哈希算法·散列表·滑动窗口
青い月の魔女36 分钟前
数据结构初阶---复杂度
c语言·数据结构·笔记·学习·算法
汤姆和杰瑞在瑞士吃糯米粑粑36 分钟前
【优先算法学习】双指针--结合题目讲解学习
c++·学习·算法
m0_5474866638 分钟前
数据结构试题库1
java·数据结构·算法
十有久诚39 分钟前
SVL-Adapter: Self-Supervised Adapter for Vision-Language Pretrained Models
人工智能·深度学习·计算机视觉·视觉语言模型·适配器微调
多多*39 分钟前
后端并发编程操作简述 Java高并发程序设计 六类并发容器 七种线程池 四种阻塞队列
java·开发语言·前端·数据结构·算法·状态模式
学习前端的小z1 小时前
【AI绘画】Midjourney进阶:色调详解(上)
人工智能·ai作画·aigc·midjourney
摆烂小白敲代码1 小时前
【算法】连通块问题(C/C++)
c语言·数据结构·c++·算法·深度优先·图论·广度优先