【LSTM和GRU极简,和最新的TT也就是状态】机器学习模型来学习状态

LSTM(长短期记忆网络)中的关键参数包括输入门、遗忘门、输出门、细胞状态和隐藏状态。以下是如何进行推理计算的示例:

LSTM参数和公式

  1. 输入门(i_t) :决定输入的信息量。

  2. 遗忘门(f_t) :决定遗忘上一个状态的信息量。

  3. 细胞状态(C_t) :存储长期信息。

  4. 输出门(o_t) :决定输出的信息量。

  5. 隐藏状态(h_t) :输出短期记忆。

推理计算示例

假设我们有以下输入数据和参数:

计算步骤

总结:训练所得四个权重,然后不停的更新状态,遗忘并输出

GRU 少了门,更新,重置,状态 3个权重。

相关推荐
老艾的AI世界7 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221517 小时前
机器学习系列----关联分析
人工智能·机器学习
FreedomLeo18 小时前
Python数据分析NumPy和pandas(四十、Python 中的建模库statsmodels 和 scikit-learn)
python·机器学习·数据分析·scikit-learn·statsmodels·numpy和pandas
风间琉璃""8 小时前
二进制与网络安全的关系
安全·机器学习·网络安全·逆向·二进制
Java Fans9 小时前
梯度提升树(Gradient Boosting Trees)详解
机器学习·集成学习·boosting
谢眠9 小时前
机器学习day6-线性代数2-梯度下降
人工智能·机器学习
sp_fyf_202410 小时前
【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
sp_fyf_202412 小时前
【大语言模型】ACL2024论文-18 MINPROMPT:基于图的最小提示数据增强用于少样本问答
人工智能·深度学习·神经网络·目标检测·机器学习·语言模型·自然语言处理
爱喝白开水a13 小时前
Sentence-BERT实现文本匹配【分类目标函数】
人工智能·深度学习·机器学习·自然语言处理·分类·bert·大模型微调
封步宇AIGC13 小时前
量化交易系统开发-实时行情自动化交易-4.2.3.指数移动平均线实现
人工智能·python·机器学习·数据挖掘