【LSTM和GRU极简,和最新的TT也就是状态】机器学习模型来学习状态

LSTM(长短期记忆网络)中的关键参数包括输入门、遗忘门、输出门、细胞状态和隐藏状态。以下是如何进行推理计算的示例:

LSTM参数和公式

  1. 输入门(i_t) :决定输入的信息量。

  2. 遗忘门(f_t) :决定遗忘上一个状态的信息量。

  3. 细胞状态(C_t) :存储长期信息。

  4. 输出门(o_t) :决定输出的信息量。

  5. 隐藏状态(h_t) :输出短期记忆。

推理计算示例

假设我们有以下输入数据和参数:

计算步骤

总结:训练所得四个权重,然后不停的更新状态,遗忘并输出

GRU 少了门,更新,重置,状态 3个权重。

相关推荐
补三补四1 小时前
LSTM 深度解析:从门控机制到实际应用
人工智能·rnn·lstm
蒋星熠1 小时前
深度学习实战指南:从神经网络基础到模型优化的完整攻略
人工智能·python·深度学习·神经网络·机器学习·卷积神经网络·transformer
java1234_小锋2 小时前
Scikit-learn Python机器学习 - 分类算法 - K-近邻(KNN)算法
python·算法·机器学习
手握风云-2 小时前
回溯剪枝的 “减法艺术”:化解超时危机的 “救命稻草”(二)
算法·机器学习·剪枝
剪一朵云爱着3 小时前
一文入门:机器学习
人工智能·机器学习
hi0_63 小时前
机器学习实战(一): 什么是机器学习
人工智能·机器学习·机器人·机器学习实战
IT古董4 小时前
【漫话机器学习系列】003.Agglomerative聚类
人工智能·算法·机器学习
xchenhao6 小时前
Scikit-Learn 对糖尿病数据集(回归任务)进行全面分析
python·机器学习·回归·数据集·scikit-learn·特征·svm
xchenhao6 小时前
Scikit-learn 对加州房价数据集(回归任务)进行全面分析
python·决策树·机器学习·回归·数据集·scikit-learn·knn
deephub6 小时前
机器人逆运动学进阶:李代数、矩阵指数与旋转流形计算
人工智能·机器学习·矩阵·机器人·李群李代数