Spark on YARN

Spark on YARN 基本概念

  1. YARN(Yet Another Resource Negotiator): 是 Hadoop 生态系统的一部分,用于集群资源管理和作业调度。
  2. Spark on YARN: 是指在 YARN 上运行 Spark 应用程序,利用 YARN 来管理资源和调度任务。

Spark on YARN 的运行模式

  1. Cluster 模式: 在这种模式下,Spark Driver 运行在 YARN 集群的一个节点上,适合长时间运行的作业。
  2. Client 模式: 在这种模式下,Spark Driver 运行在提交应用程序的客户端机器上,适合开发和调试。

Spark on YARN 的配置

为了在 YARN 上运行 Spark,需要进行一些配置:

  1. yarn-site.xml: 这是 YARN 的配置文件,通常位于 Hadoop 配置目录中。你需要确保这个文件在 Spark 配置中可以访问。

  2. spark-env.sh: 这是 Spark 的环境配置文件。你需要设置一些环境变量,比如 SPARK_HOME, HADOOP_CONF_DIR 等。

  3. spark-defaults.conf: 这是 Spark 的默认配置文件,可以在这里设置 Spark 作业的一些默认参数,比如 master URL(yarn)、deploy mode(client 或 cluster)、executor 内存等。

提交 Spark 作业到 YARN

可以使用 spark-submit 命令将 Spark 作业提交到 YARN 上运行:

python 复制代码
spark-submit \
  --class <main-class> \
  --master yarn \
  --deploy-mode cluster \
  --executor-memory 4g \
  --executor-cores 2 \
  <application-jar> \
  [application-arguments]

注意事项

  1. 资源配置: 根据作业的需求合理配置 executor 内存和核心数量,避免资源浪费或不足。
  2. 日志查看: 在 YARN 上运行的 Spark 作业的日志可以通过 YARN ResourceManager 或 YARN History Server 查看,帮助你调试和优化作业。
  3. 依赖管理: 如果你的 Spark 作业有外部依赖库,需要确保这些库可以被 YARN 节点访问,可以通过 --jars 参数指定依赖库路径。

例子

假设你有一个 Spark 应用程序,主类是 com.example.MyApp,打包后的 jar 文件名是 myapp.jar,你可以用以下命令提交到 YARN 上运行:

python 复制代码
spark-submit \
  --class com.example.MyApp \
  --master yarn \
  --deploy-mode cluster \
  --executor-memory 4g \
  --executor-cores 2 \
  myapp.jar
相关推荐
阑梦清川1 分钟前
es的docker部署和docker相关的可可视化面板工具介绍
大数据·elasticsearch·docker
番石榴AI34 分钟前
自己动手做一款ChatExcel数据分析系统,智能分析 Excel 数据
人工智能·python·数据挖掘·excel
Mr_LiYYD1 小时前
elasticsearch数据迁移
大数据·elasticsearch·搜索引擎
dalianwawatou2 小时前
GitLab 代码基础操作清单
大数据·elasticsearch·gitlab
Costrict2 小时前
解锁新阵地!CoStrict 现已支持 JetBrains 系列 IDE
大数据·ide·人工智能·深度学习·自然语言处理·ai编程·visual studio
阿里云大数据AI技术3 小时前
云栖实录|阿里云 Milvus:AI 时代的专业级向量数据库
大数据·人工智能·搜索引擎
随心............3 小时前
在开发过程中遇到问题如何解决,以及两个经典问题
hive·hadoop·spark
vivo互联网技术3 小时前
vivo HDFS EC 大规模落地实践
大数据·hdfs
QYResearch4 小时前
2025-2031年我国葡萄糖年产量和市场规模
大数据
QYResearch4 小时前
2025-2031年全球磷矿石市场规模和增长趋势
大数据