Spark on YARN

Spark on YARN 基本概念

  1. YARN(Yet Another Resource Negotiator): 是 Hadoop 生态系统的一部分,用于集群资源管理和作业调度。
  2. Spark on YARN: 是指在 YARN 上运行 Spark 应用程序,利用 YARN 来管理资源和调度任务。

Spark on YARN 的运行模式

  1. Cluster 模式: 在这种模式下,Spark Driver 运行在 YARN 集群的一个节点上,适合长时间运行的作业。
  2. Client 模式: 在这种模式下,Spark Driver 运行在提交应用程序的客户端机器上,适合开发和调试。

Spark on YARN 的配置

为了在 YARN 上运行 Spark,需要进行一些配置:

  1. yarn-site.xml: 这是 YARN 的配置文件,通常位于 Hadoop 配置目录中。你需要确保这个文件在 Spark 配置中可以访问。

  2. spark-env.sh: 这是 Spark 的环境配置文件。你需要设置一些环境变量,比如 SPARK_HOME, HADOOP_CONF_DIR 等。

  3. spark-defaults.conf: 这是 Spark 的默认配置文件,可以在这里设置 Spark 作业的一些默认参数,比如 master URL(yarn)、deploy mode(client 或 cluster)、executor 内存等。

提交 Spark 作业到 YARN

可以使用 spark-submit 命令将 Spark 作业提交到 YARN 上运行:

python 复制代码
spark-submit \
  --class <main-class> \
  --master yarn \
  --deploy-mode cluster \
  --executor-memory 4g \
  --executor-cores 2 \
  <application-jar> \
  [application-arguments]

注意事项

  1. 资源配置: 根据作业的需求合理配置 executor 内存和核心数量,避免资源浪费或不足。
  2. 日志查看: 在 YARN 上运行的 Spark 作业的日志可以通过 YARN ResourceManager 或 YARN History Server 查看,帮助你调试和优化作业。
  3. 依赖管理: 如果你的 Spark 作业有外部依赖库,需要确保这些库可以被 YARN 节点访问,可以通过 --jars 参数指定依赖库路径。

例子

假设你有一个 Spark 应用程序,主类是 com.example.MyApp,打包后的 jar 文件名是 myapp.jar,你可以用以下命令提交到 YARN 上运行:

python 复制代码
spark-submit \
  --class com.example.MyApp \
  --master yarn \
  --deploy-mode cluster \
  --executor-memory 4g \
  --executor-cores 2 \
  myapp.jar
相关推荐
Apache Flink2 分钟前
打造可编程可集成的实时计算平台:阿里云实时计算 Flink被集成能力深度解析
大数据·阿里云·flink·云计算
CC-NX10 分钟前
大数据安全技术实验:Hadoop环境部署
大数据·hadoop·分布式
万米商云30 分钟前
让数据“开口说话”:商城大数据如何预测元器件价格波动与供应风险?
大数据
沧澜sincerely2 小时前
数据挖掘概述
人工智能·数据挖掘
美林数据Tempodata7 小时前
“双新”指引,AI驱动:工业数智应用生产性实践创新
大数据·人工智能·物联网·实践中心建设·金基地建设
com_4sapi11 小时前
2025 权威认证头部矩阵系统全景对比发布 双榜单交叉验证
大数据·c语言·人工智能·算法·矩阵·机器人
鲸能云13 小时前
政策解读 | “十五五”能源规划下储能发展路径与鲸能云数字化解决方案
大数据·能源
五度易链-区域产业数字化管理平台13 小时前
五度易链大数据治理实战:从数据孤岛到智能决策
大数据
激动的小非13 小时前
电商数据分析报告
大数据·人工智能·数据分析
ITVV14 小时前
湖仓一体部署
大数据·数据湖·湖仓一体