用Pytorch实现线性回归(Linear Regression with Pytorch)

使用pytorch写神经网络的第一步就是需要准备好数据集,设计模型(用于计算y_hat(y的预测值)),构造损失函数和优化器(使用PyTorch API),写训练周期(前馈(算loss)+反馈(算梯度)+更新(更新权重))

一:准备数据

现在使用mini-batch的方式,X和Y为3x1(可以变,但是x和y要相同)的矩阵形式。

从代码中也可以看出来,x和y都是3x1的矩阵。

二:设计模型(构造计算图)

此处使用了一个仿射模型(在pytorch中叫做线性单元)

在我们设计的例子中,我们需要设置权重w的数值,和偏置量b。

那w和b的形状(几x几的矩阵),是由y_hat和x来共同确定。

之后将y_hat和y放入loss函数中进行计算,得出loss的值(一定是一个标量)。

看下模型设计的代码:

python 复制代码
#需要继承自module ,因为module中有很多方法我们需要使用
class LinearModel(torch.nn.Module):
    def __init__(self): #构造函数 在初始化对象时默认调用的函数
        super(LinearModel,self).__init__() #super调用父类的构造
        self.linear = torch.nn.Linear(1,1) #构造一个对象 linear Unit中的w和b(linear来自父类,可以自动反向传播)
    
    def forward(self,x): #前馈需要进行的计算 发现没有backword模块,因为Module中自动根据计算图实现backword过程
        y_pred = self.linear(x)
        return y_pred

model = LinearModel() #实例化 在之后既可以使用model(x)将x传入forword中的x,求得y_pred

其中torch.nn.Linear 的使用方法如下

三:构造loss和optimizer

此处我们使用MSEloss,需要的参事时y_hat和y,就可以求出loss。

代码如下:

python 复制代码
criterion = torch.nn.MSELoss(size_average=False)

我们使用SGD优化器(不会构建计算图),代码如下

python 复制代码
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)

四:训练过程

python 复制代码
for epoch in range(100):
    y_pred = model(x_data)  #先计算出y_hat
    loss = criterion(y_pred,y_data) #再计算出loss
    print(epoch,loss.item()) 
    
    optimizer.zero_grad()#在反馈前将梯度清0
    loss.backward()#反馈
    optimizer.step()#更新

最后打印一些相关内容

python 复制代码
# w b
print('w=',model.linear.weight.item())
print('b=',model.linear.weight.item())

#Test Model
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred=',y_test.data)

发现当range为1000时,已经达到了我们的预期。

五:整体流程

相关推荐
l1t25 分钟前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华1 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu2 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师3 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8285 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡5 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成6 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃6 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)6 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao6 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶