计算机视觉篇5 图像的位置--边框

计算机视觉篇4 图像的位置--边框

在训练集中,我们将每个锚框视为一个训练样本。 为了训练目标检测模型,我们需要每个锚框的类别 (class)和偏移量(offset)标签,其中前者是与锚框相关的对象的类别,后者是真实边界框相对于锚框的偏移量。 在预测时,我们为每个图像生成多个锚框,预测所有锚框的类别和偏移量,根据预测的偏移量调整它们的位置以获得预测的边界框,最后只输出符合特定条件的预测边界框。

目标检测训练集带有真实边界框的位置及其包围物体类别的标签。 要标记任何生成的锚框,我们可以参考分配到的最接近此锚框的真实边界框的位置和类别标签。 下文将介绍一个算法,它能够把最接近的真实边界框分配给锚框。

相关推荐
资源大全免费分享9 分钟前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
跳跳糖炒酸奶26 分钟前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈31 分钟前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net
Debroon35 分钟前
应华为 AI 医疗军团之战,各方动态和反应
人工智能·华为
俊哥V36 分钟前
阿里通义千问发布全模态开源大模型Qwen2.5-Omni-7B
人工智能·ai
果冻人工智能42 分钟前
每一条广告都只为你而生: 用 人工智能 颠覆广告行业的下一步
人工智能
掘金安东尼1 小时前
GPT-4.5 被 73% 的人误认为人类,“坏了?!我成替身了!”
人工智能·程序员
掘金一周1 小时前
金石焕新程 >> 瓜分万元现金大奖征文活动即将回归 | 掘金一周 4.3
前端·人工智能·后端
白雪讲堂2 小时前
AI搜索品牌曝光资料包(精准适配文心一言/Kimi/DeepSeek等场景)
大数据·人工智能·搜索引擎·ai·文心一言·deepseek
斯汤雷2 小时前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化