计算机视觉篇5 图像的位置--边框

计算机视觉篇4 图像的位置--边框

在训练集中,我们将每个锚框视为一个训练样本。 为了训练目标检测模型,我们需要每个锚框的类别 (class)和偏移量(offset)标签,其中前者是与锚框相关的对象的类别,后者是真实边界框相对于锚框的偏移量。 在预测时,我们为每个图像生成多个锚框,预测所有锚框的类别和偏移量,根据预测的偏移量调整它们的位置以获得预测的边界框,最后只输出符合特定条件的预测边界框。

目标检测训练集带有真实边界框的位置及其包围物体类别的标签。 要标记任何生成的锚框,我们可以参考分配到的最接近此锚框的真实边界框的位置和类别标签。 下文将介绍一个算法,它能够把最接近的真实边界框分配给锚框。

相关推荐
书玮嘎1 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎1 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊1 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
CareyWYR1 小时前
大模型真的能做推荐系统吗?ARAG论文给了我一个颠覆性的答案
人工智能
特立独行的猫a2 小时前
百度AI文心大模型4.5系列开源模型评测,从安装部署到应用体验
人工智能·百度·开源·文心一言·文心一言4.5
SKYDROID云卓小助手2 小时前
无人设备遥控器之自动调整编码技术篇
人工智能·嵌入式硬件·算法·自动化·信号处理
小陈phd2 小时前
李宏毅机器学习笔记——梯度下降法
人工智能·python·机器学习
CareyWYR2 小时前
每周AI论文速递(250630-250704)
人工智能
Ai墨芯1112 小时前
靠机器学习+组合优化就发了CCF-A
人工智能