集成学习总结

定义

通过训练若干个个体学习器,通过一定的结合策略,来完成学习任务,(常常可以获得比单一学习显著优越的学习器)就可以最终形成一个强学习器。

分类

种类 学习器 代表 计算 样本 样本权重&弱分类起权重
bagging 所有的个体学习器都是一个种类的 随机森林 并行,个体学习器之间不存在强依赖关系 训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。 使用均匀取样,每个样例的权重相等 所有预测函数的权重相等。
boosting 所有的个体学习器都是一个种类的 AdaBoost, Xgboost,GBDT 串行,个体学习器之间存在强依赖关系 每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整。 根据错误率不断调整样例的权值,错误率越大则权重越大。 每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重。
Stacking 所有的个体学习器不全是一个种类的

Bagging

代表算法:随机森林(Random Forest)

step

  • 从原始样本集中抽取训练集。每轮从原始样本集中抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中,每次采样事独立随机的),共进行k轮抽取,得到k个训练集。(k个训练集之间是相互独立的)。

  • 每次使用一个训练集得到一个模型,k个训练集共得到k个模型。

  • 对分类问题:少数服从多数。

  • 对回归问题,计算均值。

随机森林

随机森林在bagging的样本随机采样基础上,又加上了特征的随机选择

Boosting

代表算法:AdaBoost, Xgboost,GBDT

训练过程为阶梯状,基模型按次序一一进行训练(实现上可以做到并行),基模型的训练集按照某种策略每次都进行一定的转化。如果某一个数据在这次分错了,那么在下一次我就会给它更大的权重。对所有基模型预测的结果进行线性综合产生最终的预测结果

step

  • 首先从训练集用初始权重训练出一个弱学习器1;

  • 根据弱学习的学习误差率表现来更新训练样本的权重,错误样本权重变高,让模型更关注错误样本;

  • 然后基于调整权重后的训练集来训练弱学习器2;

  • 如此重复进行,直到弱学习器数达到事先指定的数目T;

  • 最终将这T个弱学习器通过加权求和(加法模型),得到最终的强学习器。

优点 缺点
AdaBoost 利用前一轮弱学习器的误差率来更新训练集的权重 ,这样一轮轮的迭代下去,简单的说是 Boosting框架+任意基学习器算法+指数损失函数 对异常样本敏感,异常样本在迭代中可能会获得较高的权重,影响最终预测准确性
Xgboost CART回归树模型
GBDT 每个分类器在上一轮分类器的残差基础上进行训练。

Stacking

分阶段操作:第一阶段输入数据特征得出各自结果,第二阶段再用前一阶段结果训练得到分类结果。

step

  • 首先先训练多个不同的模型;

  • 然后把之前训练的各个模型的输出为输入来训练一个模型,以得到一个最终的输出。

具体方法是把数据分成两部分,用其中一部分训练几个基模型A1,A2,A3,用另一部分数据测试这几个基模型,把A1,A2,A3的输出作为输入,训练组合模型B。

相关推荐
冰西瓜6006 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术6 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
偶信科技7 小时前
国产极细拖曳线列阵:16mm“水下之耳”如何撬动智慧海洋新蓝海?
人工智能·科技·偶信科技·海洋设备·极细拖曳线列阵
Java后端的Ai之路7 小时前
【神经网络基础】-神经网络学习全过程(大白话版)
人工智能·深度学习·神经网络·学习
庚昀◟7 小时前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署
喜欢吃豆7 小时前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
数据分析能量站7 小时前
AI如何重塑个人生产力、组织架构和经济模式
人工智能
wscats8 小时前
Markdown 编辑器技术调研
前端·人工智能·markdown
AI科技星8 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
GIS数据转换器8 小时前
基于知识图谱的个性化旅游规划平台
人工智能·3d·无人机·知识图谱·旅游