集成学习总结

定义

通过训练若干个个体学习器,通过一定的结合策略,来完成学习任务,(常常可以获得比单一学习显著优越的学习器)就可以最终形成一个强学习器。

分类

种类 学习器 代表 计算 样本 样本权重&弱分类起权重
bagging 所有的个体学习器都是一个种类的 随机森林 并行,个体学习器之间不存在强依赖关系 训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。 使用均匀取样,每个样例的权重相等 所有预测函数的权重相等。
boosting 所有的个体学习器都是一个种类的 AdaBoost, Xgboost,GBDT 串行,个体学习器之间存在强依赖关系 每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整。 根据错误率不断调整样例的权值,错误率越大则权重越大。 每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重。
Stacking 所有的个体学习器不全是一个种类的

Bagging

代表算法:随机森林(Random Forest)

step

  • 从原始样本集中抽取训练集。每轮从原始样本集中抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中,每次采样事独立随机的),共进行k轮抽取,得到k个训练集。(k个训练集之间是相互独立的)。

  • 每次使用一个训练集得到一个模型,k个训练集共得到k个模型。

  • 对分类问题:少数服从多数。

  • 对回归问题,计算均值。

随机森林

随机森林在bagging的样本随机采样基础上,又加上了特征的随机选择

Boosting

代表算法:AdaBoost, Xgboost,GBDT

训练过程为阶梯状,基模型按次序一一进行训练(实现上可以做到并行),基模型的训练集按照某种策略每次都进行一定的转化。如果某一个数据在这次分错了,那么在下一次我就会给它更大的权重。对所有基模型预测的结果进行线性综合产生最终的预测结果

step

  • 首先从训练集用初始权重训练出一个弱学习器1;

  • 根据弱学习的学习误差率表现来更新训练样本的权重,错误样本权重变高,让模型更关注错误样本;

  • 然后基于调整权重后的训练集来训练弱学习器2;

  • 如此重复进行,直到弱学习器数达到事先指定的数目T;

  • 最终将这T个弱学习器通过加权求和(加法模型),得到最终的强学习器。

优点 缺点
AdaBoost 利用前一轮弱学习器的误差率来更新训练集的权重 ,这样一轮轮的迭代下去,简单的说是 Boosting框架+任意基学习器算法+指数损失函数 对异常样本敏感,异常样本在迭代中可能会获得较高的权重,影响最终预测准确性
Xgboost CART回归树模型
GBDT 每个分类器在上一轮分类器的残差基础上进行训练。

Stacking

分阶段操作:第一阶段输入数据特征得出各自结果,第二阶段再用前一阶段结果训练得到分类结果。

step

  • 首先先训练多个不同的模型;

  • 然后把之前训练的各个模型的输出为输入来训练一个模型,以得到一个最终的输出。

具体方法是把数据分成两部分,用其中一部分训练几个基模型A1,A2,A3,用另一部分数据测试这几个基模型,把A1,A2,A3的输出作为输入,训练组合模型B。

相关推荐
晚霞的不甘10 小时前
CANN:华为全栈AI计算框架的深度解析(终极扩展版 · 完整篇)
人工智能·华为
lisw0513 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
2501_9416233214 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛14 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI15 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus15 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声15 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API15 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
咚咚王者15 小时前
人工智能之数据分析 numpy:第十三章 工具衔接与迁移
人工智能·数据分析·numpy