Bert中文预训练模型(Bert-base-chinese)

介绍

Bert-base-chinese模型是一个在简体和繁体中文文本上训练得到的预训练模型,具有以下特点:

  • 12个隐层
  • 输出768维张量
  • 12个自注意力头
  • 110M参数量

该模型的主要作用是获取每个汉字的向量表示,后续通过微调可应用于各种简体和繁体中文任务。

使用

python 复制代码
import torch
from transformers import BertTokenizer, BertModel

# 第一步:离线下载
# from transformers import BertModel, BertTokenizer
# model_name = "bert-base-chinese"
# # 下载模型和分词器
# model = BertModel.from_pretrained(model_name)
# tokenizer = BertTokenizer.from_pretrained(model_name)
# # 保存模型和分词器到本地路径
# model.save_pretrained("./bert-base-chinese")
# tokenizer.save_pretrained("./bert-base-chinese")

# 第二步:加载模型和分词器
model_path = "./bert-base-chinese"
tokenizer = BertTokenizer.from_pretrained(model_path)
model = BertModel.from_pretrained(model_path)


def encode_text_with_bert(text):
    """
    使用bert-base-chinese模型对文本进行编码
    :param text: 输入的文本
    :return: 编码后的张量
    """
    # 使用tokenizer对文本进行编码,并去掉起始和结束标志
    encoded_text = tokenizer.encode(text)[1: -1]
    # 把列表转成张量
    encoded_tensor = torch.LongTensor([encoded_text])

    # 不自动进行梯度计算
    with torch.no_grad():
        output = model(encoded_tensor)

    # 返回编码后的张量(取last_hidden_state)
    return output[0]


if __name__ == '__main__':
    text1 = "你好,美丽中国"
    result = encode_text_with_bert(text1)
    print('text1编码的形状:', result.size())
    print('text1编码:\n', result)

text1编码的形状: torch.Size([1, 7, 768])

text1编码:

tensor([[[ 0.0781, -0.7386, -0.5120, ..., 1.0695, -0.4252, -0.3970],

0.3118, -0.2283, -0.2513, ..., -0.0618, 0.8715, -0.0833\], \[ 0.0287, -0.4937, -0.5554, ..., 0.1643, 0.8771, 0.0019\], ..., \[-0.3068, -0.3406, 0.0525, ..., 0.5506, 0.8915, -0.3713\], \[-0.1079, -0.0951, -0.1549, ..., 0.8432, 0.7255, -0.5235\], \[-0.0414, -0.3786, 0.1590, ..., 0.3844, 0.7464, -0.4266\]\]\])

相关推荐
YongCheng_Liang1 天前
Python 基础核心模块全解析:从入门到实践的知识框架
python
时序之心1 天前
时序论文速递:覆盖损失函数优化、模型架构创新、理论基础与表征学习、应用场景与隐私保护等方向(11.10-11.14)
人工智能·损失函数·时间序列·表征学习·时序论文
IT_陈寒1 天前
Vue3性能优化实战:我从这5个技巧中获得了40%的渲染提升
前端·人工智能·后端
RanMatrix1 天前
python-logging模块
python
DevUI团队1 天前
🔥Angular开发者看过来:不止于Vue,MateChat智能化UI库现已全面支持Angular!
前端·人工智能·angular.js
北京青翼科技1 天前
【HD200IS A2 DK 】昇腾 310B 高可靠智能计算开发套件
图像处理·人工智能·信号处理·智能硬件
智算菩萨1 天前
从 0 到 1 搭建 AI 智能体:从创建、知识库与提示词,到 MCP 接入和多智能体协作的全流程实践与评测
人工智能
e***74951 天前
Redis——使用 python 操作 redis 之从 hmse 迁移到 hset
数据库·redis·python
onebound_noah1 天前
电商图片搜索:技术破局与商业落地,重构“视觉到交易”全链路
大数据·前端·网络·人工智能·重构·php
Ace_31750887761 天前
京东商品详情接口终极突破:从多接口联动解析到数据全息重构
python·重构