Bert中文预训练模型(Bert-base-chinese)

介绍

Bert-base-chinese模型是一个在简体和繁体中文文本上训练得到的预训练模型,具有以下特点:

  • 12个隐层
  • 输出768维张量
  • 12个自注意力头
  • 110M参数量

该模型的主要作用是获取每个汉字的向量表示,后续通过微调可应用于各种简体和繁体中文任务。

使用

python 复制代码
import torch
from transformers import BertTokenizer, BertModel

# 第一步:离线下载
# from transformers import BertModel, BertTokenizer
# model_name = "bert-base-chinese"
# # 下载模型和分词器
# model = BertModel.from_pretrained(model_name)
# tokenizer = BertTokenizer.from_pretrained(model_name)
# # 保存模型和分词器到本地路径
# model.save_pretrained("./bert-base-chinese")
# tokenizer.save_pretrained("./bert-base-chinese")

# 第二步:加载模型和分词器
model_path = "./bert-base-chinese"
tokenizer = BertTokenizer.from_pretrained(model_path)
model = BertModel.from_pretrained(model_path)


def encode_text_with_bert(text):
    """
    使用bert-base-chinese模型对文本进行编码
    :param text: 输入的文本
    :return: 编码后的张量
    """
    # 使用tokenizer对文本进行编码,并去掉起始和结束标志
    encoded_text = tokenizer.encode(text)[1: -1]
    # 把列表转成张量
    encoded_tensor = torch.LongTensor([encoded_text])

    # 不自动进行梯度计算
    with torch.no_grad():
        output = model(encoded_tensor)

    # 返回编码后的张量(取last_hidden_state)
    return output[0]


if __name__ == '__main__':
    text1 = "你好,美丽中国"
    result = encode_text_with_bert(text1)
    print('text1编码的形状:', result.size())
    print('text1编码:\n', result)

text1编码的形状: torch.Size([1, 7, 768])

text1编码:

tensor([[[ 0.0781, -0.7386, -0.5120, ..., 1.0695, -0.4252, -0.3970],

0.3118, -0.2283, -0.2513, ..., -0.0618, 0.8715, -0.0833\], \[ 0.0287, -0.4937, -0.5554, ..., 0.1643, 0.8771, 0.0019\], ..., \[-0.3068, -0.3406, 0.0525, ..., 0.5506, 0.8915, -0.3713\], \[-0.1079, -0.0951, -0.1549, ..., 0.8432, 0.7255, -0.5235\], \[-0.0414, -0.3786, 0.1590, ..., 0.3844, 0.7464, -0.4266\]\]\])

相关推荐
童话名剑16 分钟前
目标检测(吴恩达深度学习笔记)
人工智能·目标检测·滑动窗口·目标定位·yolo算法·特征点检测
木卫四科技24 分钟前
【木卫四 CES 2026】观察:融合智能体与联邦数据湖的安全数据运营成为趋势
人工智能·安全·汽车
吃茄子的猫6 小时前
quecpython中&的具体含义和使用场景
开发语言·python
珠海西格电力6 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
じ☆冷颜〃6 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
数据大魔方6 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
启途AI6 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_16 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
APIshop6 小时前
Python 爬虫获取 item_get_web —— 淘宝商品 SKU、详情图、券后价全流程解析
前端·爬虫·python
楚来客6 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer