Bert中文预训练模型(Bert-base-chinese)

介绍

Bert-base-chinese模型是一个在简体和繁体中文文本上训练得到的预训练模型,具有以下特点:

  • 12个隐层
  • 输出768维张量
  • 12个自注意力头
  • 110M参数量

该模型的主要作用是获取每个汉字的向量表示,后续通过微调可应用于各种简体和繁体中文任务。

使用

python 复制代码
import torch
from transformers import BertTokenizer, BertModel

# 第一步:离线下载
# from transformers import BertModel, BertTokenizer
# model_name = "bert-base-chinese"
# # 下载模型和分词器
# model = BertModel.from_pretrained(model_name)
# tokenizer = BertTokenizer.from_pretrained(model_name)
# # 保存模型和分词器到本地路径
# model.save_pretrained("./bert-base-chinese")
# tokenizer.save_pretrained("./bert-base-chinese")

# 第二步:加载模型和分词器
model_path = "./bert-base-chinese"
tokenizer = BertTokenizer.from_pretrained(model_path)
model = BertModel.from_pretrained(model_path)


def encode_text_with_bert(text):
    """
    使用bert-base-chinese模型对文本进行编码
    :param text: 输入的文本
    :return: 编码后的张量
    """
    # 使用tokenizer对文本进行编码,并去掉起始和结束标志
    encoded_text = tokenizer.encode(text)[1: -1]
    # 把列表转成张量
    encoded_tensor = torch.LongTensor([encoded_text])

    # 不自动进行梯度计算
    with torch.no_grad():
        output = model(encoded_tensor)

    # 返回编码后的张量(取last_hidden_state)
    return output[0]


if __name__ == '__main__':
    text1 = "你好,美丽中国"
    result = encode_text_with_bert(text1)
    print('text1编码的形状:', result.size())
    print('text1编码:\n', result)

text1编码的形状: torch.Size([1, 7, 768])

text1编码:

tensor([[[ 0.0781, -0.7386, -0.5120, ..., 1.0695, -0.4252, -0.3970],

0.3118, -0.2283, -0.2513, ..., -0.0618, 0.8715, -0.0833\], \[ 0.0287, -0.4937, -0.5554, ..., 0.1643, 0.8771, 0.0019\], ..., \[-0.3068, -0.3406, 0.0525, ..., 0.5506, 0.8915, -0.3713\], \[-0.1079, -0.0951, -0.1549, ..., 0.8432, 0.7255, -0.5235\], \[-0.0414, -0.3786, 0.1590, ..., 0.3844, 0.7464, -0.4266\]\]\])

相关推荐
FreeCode3 分钟前
LangGraph1.0智能体开发:运行时系统
python·langchain·agent
信也科技布道师FTE14 分钟前
当AMIS遇见AI智能体:如何为低代码开发装上“智慧大脑”?
人工智能·低代码·llm
青瓷程序设计16 分钟前
植物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
AI即插即用38 分钟前
即插即用系列 | CVPR 2025 WPFormer:用于表面缺陷检测的查询式Transformer
人工智能·深度学习·yolo·目标检测·cnn·视觉检测·transformer
习习.y40 分钟前
关于python中的面向对象
开发语言·python
唐兴通个人1 小时前
数字化AI大客户营销TOB营销客户开发专业销售技巧培训讲师培训师唐兴通老师分享AI销冠人工智能销售AI赋能销售医药金融工业品制造业
人工智能·金融
hmbbcsm1 小时前
练习python题目小记(六)
开发语言·python
wow_DG1 小时前
【Python✨】VS Code 秒开 Python 类型检查:一招 mypy + settings.json 让你的 Bug 原地现形!
python·json·bug
Aspect of twilight1 小时前
LeetCode华为大模型岗刷题
python·leetcode·华为·力扣·算法题
人机与认知实验室1 小时前
国内主流大语言模型之比较
人工智能·语言模型·自然语言处理