PyTorch 深度学习实践-循环神经网络(高级篇)

视频指路
参考博客笔记
参考笔记二

文章目录


上课笔记

个人能力有限,重看几遍吧,第一遍基本看不懂

名字的每个字母都是一个特征x1,x2,x3...,一个名字是一个序列

rnn用GRU

用ASCII表作为词典,长度为128,每一个值对应一个独热向量,比如77对应128维向量中第77个位置为1其他位置为0,但是对于embed层只要告诉它哪个是1就行,这些序列长短不一,需要padding到统一长度

把国家的名字变成索引标签,做成下图所示的词典

数据集构建

python 复制代码
class NameDataset(Dataset):
    def __init__(self, is_train=True):
        # 文件读取
        filename = './dataset/names_train.csv.gz' if is_train else './dataset/names_test.csv.gz'
        with gzip.open(filename, 'rt') as f:  # rt表示以只读模式打开文件,并将文件内容解析为文本形式
            reader = csv.reader(f)
            rows =list(reader)  # 每个元素由一个名字和国家组成
        # 提取属性
        self.names = [row[0] for row in rows]
        self.len = len(self.names)
        self.countries = [row[1] for row in rows]
        # 编码处理
        self.country_list = list(sorted(set(self.countries)))  # 列表,按字母表顺序排序,去重后有18个国家名
        self.country_dict = self.get_countries_dict()  # 字典,国家名对应序号标签
        self.country_num = len(self.country_list)

    def __getitem__(self, item):
        # 索引获取
        return self.names[item], self.country_dict[self.countries[item]]  # 根据国家去字典查找索引

    def __len__(self):
        # 获取个数
        return self.len

    def get_countries_dict(self):
        # 根据国家名对应序号
        country_dict = dict()
        for idx, country_name in enumerate(self.country_list):
            country_dict[country_name] = idx
        return country_dict

    def idx2country(self, index):
        # 根据索引返回国家名字
        return self.country_list[index]

    def get_countries_num(self):
        # 返回国家名个数(分类的总个数)
        return self.country_num

双向RNN,从左往右走一遍,把得到的值和逆向计算得到的hN拼到一起,比如最后一个 [ h 0 b , h n f ] [h^b_0, h^f_n] [h0b,hnf]

python 复制代码
		self.n_directions = 2 if bidirectional else 1

        self.gru = torch.nn.GRU(hidden_size, hidden_size, num_layers=n_layers, bidirectional=bidirectional)#bidirectional双向神经网络

h i d d e n = [ h N f , h N b ] hidden = [h{^f_N},h{^b_N}] hidden=[hNf,hNb]

python 复制代码
# 进行打包(不考虑0元素,提高运行速度)首先需要将嵌入数据按长度排好
gru_input = pack_padded_sequence(embedding, seq_lengths)

pack_padded_sequence:这是 PyTorch 提供的一个函数,用于将填充后的序列打包。其主要目的是跳过填充值,并且在 RNN 中只处理实际的序列数据。它会将填充后的嵌入和实际序列长度作为输入,并返回一个打包后的序列,便于 RNN 处理。可以只把非零序列提取出来放到一块,也就是把为0的填充量都丢掉,这样将来fru就可以处理长短不一的输入序列

首先要根据序列长度进行排序,然后再经过嵌入层

如下图所示:这样用gru的时候效率就会更高,因为可以方便去掉好多padding的数据

双向RNN要拼接起来

python 复制代码
if self.n_directions == 2:
            hidden_cat = torch.cat([hidden[-1], hidden[-2]], dim=1)  # hidden[-1]的形状是(1,256,100),hidden[-2]的形状是(1,256,100),拼接后的形状是(1,256,200)

总代码

python 复制代码
import csv
import time
import matplotlib.pyplot as plt
import numpy as np
import math
import gzip  # 用于读取压缩文件
import torch
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pack_padded_sequence

# 1.超参数设置
HIDDEN_SIZE = 100
BATCH_SIZE = 256
N_LAYER = 2  # RNN的层数
N_EPOCHS = 100
N_CHARS = 128  # ASCII码的个数
USE_GPU = False


# 工具类函数
# 把名字转换成ASCII码,    b  返回ASCII码值列表和名字的长度
def name2list(name):
    arr = [ord(c) for c in name]
    return arr, len(arr)


# 是否把数据放到GPU上
def create_tensor(tensor):
    if USE_GPU:
        device = torch.device('cuda:0')
        tensor = tensor.to(device)
    return tensor


def timesince(since):
    now = time.time()
    s = now - since
    m = math.floor(s / 60)  # math.floor()向下取整
    s -= m * 60
    return '%dmin %ds' % (m, s)  # 多少分钟多少秒


# 2.构建数据集
class NameDataset(Dataset):
    def __init__(self, is_train=True):
        # 文件读取
        filename = './dataset/names_train.csv.gz' if is_train else './dataset/names_test.csv.gz'
        with gzip.open(filename, 'rt') as f:  # rt表示以只读模式打开文件,并将文件内容解析为文本形式
            reader = csv.reader(f)
            rows =list(reader)  # 每个元素由一个名字和国家组成
        # 提取属性
        self.names = [row[0] for row in rows]
        self.len = len(self.names)
        self.countries = [row[1] for row in rows]
        # 编码处理
        self.country_list = list(sorted(set(self.countries)))  # 列表,按字母表顺序排序,去重后有18个国家名
        self.country_dict = self.get_countries_dict()  # 字典,国家名对应序号标签
        self.country_num = len(self.country_list)

    def __getitem__(self, item):
        # 索引获取
        return self.names[item], self.country_dict[self.countries[item]]  # 根据国家去字典查找索引

    def __len__(self):
        # 获取个数
        return self.len

    def get_countries_dict(self):
        # 根据国家名对应序号
        country_dict = dict()
        for idx, country_name in enumerate(self.country_list):
            country_dict[country_name] = idx
        return country_dict

    def idx2country(self, index):
        # 根据索引返回国家名字
        return self.country_list[index]

    def get_countries_num(self):
        # 返回国家名个数(分类的总个数)
        return self.country_num


# 3.实例化数据集
train_set = NameDataset(is_train=True)
train_loader = DataLoader(train_set, shuffle=True, batch_size=BATCH_SIZE, num_workers=2)
test_set = NameDataset(is_train=False)
test_loder = DataLoader(test_set, shuffle=False, batch_size=BATCH_SIZE, num_workers=2)
N_COUNTRY = train_set.get_countries_num()  # 18个国家名,即18个类别


# 4.模型构建
class GRUClassifier(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True):
        super(GRUClassifier, self).__init__()
        self.hidden_size = hidden_size
        self.n_layers = n_layers
        self.n_directions = 2 if bidirectional else 1

        # 词嵌入层,将词语映射到hidden维度
        self.embedding = torch.nn.Embedding(input_size, hidden_size)
        # GRU层(输入为特征数,这里是embedding_size,其大小等于hidden_size))
        self.gru = torch.nn.GRU(hidden_size, hidden_size, num_layers=n_layers, bidirectional=bidirectional)#bidirectional双向神经网络
        # 线性层
        self.fc = torch.nn.Linear(hidden_size * self.n_directions, output_size)

    def _init_hidden(self, bath_size):
        # 初始化权重,(n_layers * num_directions 双向, batch_size, hidden_size)
        hidden = torch.zeros(self.n_layers * self.n_directions, bath_size, self.hidden_size)
        return create_tensor(hidden)

    def forward(self, input, seq_lengths):
        # 转置 B X S -> S X B
        input = input.t()  # 此时的维度为seq_len, batch_size
        batch_size = input.size(1)
        hidden = self._init_hidden(batch_size)

        # 嵌入层处理 input:(seq_len,batch_size) -> embedding:(seq_len,batch_size,embedding_size)
        embedding = self.embedding(input)

        # 进行打包(不考虑0元素,提高运行速度)需要将嵌入数据按长度排好
        gru_input = pack_padded_sequence(embedding, seq_lengths)

        # output:(*, hidden_size * num_directions),*表示输入的形状(seq_len,batch_size)
        # hidden:(num_layers * num_directions, batch, hidden_size)
        output, hidden = self.gru(gru_input, hidden)
        if self.n_directions == 2:
            hidden_cat = torch.cat([hidden[-1], hidden[-2]], dim=1)  # hidden[-1]的形状是(1,256,100),hidden[-2]的形状是(1,256,100),拼接后的形状是(1,256,200)
        else:
            hidden_cat = hidden[-1]  # (1,256,100)
        fc_output = self.fc(hidden_cat)
        return fc_output


# 3.数据处理(姓名->数字)
def make_tensors(names, countries):
    # 获取嵌入长度从大到小排序的seq_tensor(嵌入向量)、seq_lengths(对应长度)、countries(对应顺序的国家序号)-> 便于pack_padded_sequence处理
    name_len_list = [name2list(name) for name in names]  # 每个名字对应的1列表
    name_seq = [sl[0] for sl in name_len_list]  # 姓名列表
    seq_lengths = torch.LongTensor([sl[1] for sl in name_len_list])  # 名字对应的字符个数
    countries = countries.long()   # PyTorch 中,张量的默认数据类型是浮点型 (float),这里转换成整型,可以避免浮点数比较时的精度误差,从而提高模型的训练效果

    # 创建全零张量,再依次进行填充
    # 创建了一个 len(name_seq) * seq_length.max()维的张量
    seq_tensor = torch.zeros(len(name_seq), seq_lengths.max()).long()
    for idx, (seq, seq_len) in enumerate(zip(name_seq, seq_lengths)):
        seq_tensor[idx, :seq_len] = torch.LongTensor(seq)

    # 为了使用pack_padded_sequence,需要按照长度排序
    # perm_idx是排序后的数据在原数据中的索引,seq_tensor是排序后的数据,seq_lengths是排序后的数据的长度,countries是排序后的国家
    seq_lengths, perm_idx = seq_lengths.sort(dim=0, descending=True)  # descending=True 表示按降序进行排序,即从最长的序列到最短的序列。
    seq_tensor = seq_tensor[perm_idx]
    countries = countries[perm_idx]

    return create_tensor(seq_tensor), create_tensor(seq_lengths), create_tensor(countries)


# 训练循环
def train(epoch, start):
    total_loss = 0
    for i, (names, countries) in enumerate(train_loader, 1):
        inputs, seq_lengths, target = make_tensors(names, countries)  # 输入、每个序列长度、输出
        output = model(inputs, seq_lengths)
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_loss += loss.item()
        if i % 10 == 0:
            print(f'[{timesince(start)}] Epoch {epoch} ', end='')
            print(f'[{i * len(inputs)}/{len(train_set)}] ', end='')
            print(f'loss={total_loss / (i * len(inputs))}')  # 打印每个样本的平均损失

    return total_loss


# 测试循环
def test():
    correct = 0
    total = len(test_set)
    print('evaluating trained model ...')
    with torch.no_grad():
        for i, (names, countries) in enumerate(test_loder, 1):
            inputs, seq_lengths, target = make_tensors(names, countries)
            output = model(inputs, seq_lengths)
            pred = output.max(dim=1, keepdim=True)[1]  # 返回每一行中最大值的那个元素的索引,且keepdim=True,表示保持输出的二维特性
            correct += pred.eq(target.view_as(pred)).sum().item()  # 计算正确的个数
        percent = '%.2f' % (100 * correct / total)
        print(f'Test set: Accuracy {correct}/{total} {percent}%')

    return correct / total  # 返回的是准确率,0.几几的格式,用来画图


if __name__ == '__main__':
    model = GRUClassifier(N_CHARS, HIDDEN_SIZE, N_COUNTRY, N_LAYER)
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    device = 'cuda:0' if USE_GPU else 'cpu'
    model.to(device)
    start = time.time()
    print('Training for %d epochs...' % N_EPOCHS)
    acc_list = []
    # 在每个epoch中,训练完一次就测试一次
    for epoch in range(1, N_EPOCHS + 1):
        # Train cycle
        train(epoch, start)
        acc = test()
        acc_list.append(acc)

    # 绘制在测试集上的准确率
    epoch = np.arange(1, len(acc_list) + 1)
    acc_list = np.array(acc_list)
    plt.plot(epoch, acc_list)
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.grid()
    plt.show()

在准确率最高点save模型

保存整个模型:

python 复制代码
torch.save(model,'save.pt')

只保存训练好的权重:

python 复制代码
torch.save(model.state_dict(), 'save.pt')

练习

数据集地址,判断句子是哪类(0-negative,1-somewhat negative,2-neutral,3-somewhat positive,4-positive)情感分析

python 复制代码
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import torch.optim as optim
from sklearn.preprocessing import LabelEncoder
from torch.nn.utils.rnn import pad_sequence
from torch.nn.utils.rnn import pack_padded_sequence
import zipfile


# 超参数设置
BATCH_SIZE = 64
HIDDEN_SIZE = 100
N_LAYERS = 2
N_EPOCHS = 10
LEARNING_RATE = 0.001

# 数据集路径
TRAIN_ZIP_PATH = './dataset/train.tsv.zip'
TEST_ZIP_PATH = './dataset/test.tsv.zip'

# 解压缩文件
def unzip_file(zip_path, extract_to='.'):
    with zipfile.ZipFile(zip_path, 'r') as zip_ref:
        zip_ref.extractall(extract_to)

unzip_file(TRAIN_ZIP_PATH)
unzip_file(TEST_ZIP_PATH)

# 数据集路径
TRAIN_PATH = './train.tsv'
TEST_PATH = './test.tsv'

# 自定义数据集类
class SentimentDataset(Dataset):
    def __init__(self, phrases, sentiments=None):
        self.phrases = phrases
        self.sentiments = sentiments

    def __len__(self):
        return len(self.phrases)

    def __getitem__(self, idx):
        phrase = self.phrases[idx]
        if self.sentiments is not None:
            sentiment = self.sentiments[idx]
            return phrase, sentiment
        return phrase

# 加载数据
def load_data():
    train_df = pd.read_csv(TRAIN_PATH, sep='\t')
    test_df = pd.read_csv(TEST_PATH, sep='\t')
    return train_df, test_df

train_df, test_df = load_data()

# 数据预处理
def preprocess_data(train_df, test_df):
    le = LabelEncoder()
    train_df['Sentiment'] = le.fit_transform(train_df['Sentiment'])
    train_phrases = train_df['Phrase'].tolist()
    train_sentiments = train_df['Sentiment'].tolist()
    test_phrases = test_df['Phrase'].tolist()
    return train_phrases, train_sentiments, test_phrases, le

train_phrases, train_sentiments, test_phrases, le = preprocess_data(train_df, test_df)

# 构建词汇表
def build_vocab(phrases):
    vocab = set()
    for phrase in phrases:
        for word in phrase.split():
            vocab.add(word)
    word2idx = {word: idx for idx, word in enumerate(vocab, start=1)}
    word2idx['<PAD>'] = 0
    return word2idx

word2idx = build_vocab(train_phrases + test_phrases)

# 将短语转换为索引
def phrase_to_indices(phrase, word2idx):
    return [word2idx[word] for word in phrase.split() if word in word2idx]

train_indices = [phrase_to_indices(phrase, word2idx) for phrase in train_phrases]
test_indices = [phrase_to_indices(phrase, word2idx) for phrase in test_phrases]

# 移除长度为0的样本
train_indices = [x for x in train_indices if len(x) > 0]
train_sentiments = [y for x, y in zip(train_indices, train_sentiments) if len(x) > 0]
test_indices = [x for x in test_indices if len(x) > 0]

# 数据加载器
def collate_fn(batch):
    phrases, sentiments = zip(*batch)
    lengths = torch.tensor([len(x) for x in phrases])
    phrases = [torch.tensor(x) for x in phrases]
    phrases_padded = pad_sequence(phrases, batch_first=True, padding_value=0)
    sentiments = torch.tensor(sentiments)
    return phrases_padded, sentiments, lengths

train_dataset = SentimentDataset(train_indices, train_sentiments)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn)

test_dataset = SentimentDataset(test_indices)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False, collate_fn=lambda x: pad_sequence([torch.tensor(phrase) for phrase in x], batch_first=True, padding_value=0))

# 模型定义
class SentimentRNN(nn.Module):
    def __init__(self, vocab_size, embed_size, hidden_size, output_size, n_layers):
        super(SentimentRNN, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size, padding_idx=0)
        self.lstm = nn.LSTM(embed_size, hidden_size, n_layers, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_size * 2, output_size)

    def forward(self, x, lengths):
        x = self.embedding(x)
        x = pack_padded_sequence(x, lengths.cpu(), batch_first=True, enforce_sorted=False)
        _, (hidden, _) = self.lstm(x)
        hidden = torch.cat((hidden[-2], hidden[-1]), dim=1)
        out = self.fc(hidden)
        return out

vocab_size = len(word2idx)
embed_size = 128
output_size = len(le.classes_)

model = SentimentRNN(vocab_size, embed_size, HIDDEN_SIZE, output_size, N_LAYERS)

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)

# 训练和测试循环
def train(model, train_loader, criterion, optimizer, n_epochs):
    model.train()
    for epoch in range(n_epochs):
        total_loss = 0
        for phrases, sentiments, lengths in train_loader:
            optimizer.zero_grad()
            output = model(phrases, lengths)
            loss = criterion(output, sentiments)
            loss.backward()
            optimizer.step()
            total_loss += loss.item()
        print(f'Epoch: {epoch+1}, Loss: {total_loss/len(train_loader)}')

def generate_test_results(model, test_loader, test_ids):
    model.eval()
    results = []
    with torch.no_grad():
        for phrases in test_loader:
            lengths = torch.tensor([len(x) for x in phrases])
            output = model(phrases, lengths)
            preds = torch.argmax(output, dim=1)
            results.extend(preds.cpu().numpy())
    return results

train(model, train_loader, criterion, optimizer, N_EPOCHS)

test_ids = test_df['PhraseId'].tolist()
preds = generate_test_results(model, test_loader, test_ids)

# 保存结果
output_df = pd.DataFrame({'PhraseId': test_ids, 'Sentiment': preds})
output_df.to_csv('sentiment_predictions.csv', index=False)

引入随机性:重要性采样,对分类的样本按照它的分布来进行随机采样

相关推荐
学术头条21 分钟前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型
孙同学要努力30 分钟前
《深度学习》——深度学习基础知识(全连接神经网络)
人工智能·深度学习·神经网络
喵~来学编程啦1 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
-Nemophilist-3 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
好喜欢吃红柚子6 小时前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
羊小猪~~7 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
软工菜鸡7 小时前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
哔哩哔哩技术8 小时前
B站S赛直播中的关键事件识别与应用
深度学习
deephub9 小时前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
___Dream9 小时前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互