Spark 和 Kafka 处理 API 请求与返回数据DEMO

以下是一个更详细的使用 Spark 和 Kafka 处理 API 请求与返回数据,并保障其正常性的示例代码。这个示例代码增加了一些错误处理和数据校验的逻辑:

python 复制代码
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
import json
import requests
import time

# 创建 SparkContext 和 StreamingContext
sc = SparkContext(appName="KafkaStreamingWithAPI")
ssc = StreamingContext(sc, 5)  # 每 5 秒处理一次数据

# Kafka 配置
kafkaParams = {
    "bootstrap.servers": "localhost:9092",
    "group.id": "spark-streaming-group"
}

# 定义要订阅的 Kafka 主题
topics = ["your_kafka_topic"]

# 从 Kafka 读取数据
kafkaStream = KafkaUtils.createDirectStream(ssc, topics, kafkaParams)

# API 端点
api_endpoint = "http://your_api_endpoint.com/api"

# 处理接收到的消息
def process_data(rdd):
    if not rdd.isEmpty():
        data = rdd.map(lambda x: json.loads(x[1]))
        
        # 数据校验
        valid_data = [item for item in data if 'key_you_expect' in item]
        
        for item in valid_data:
            try:
                # 发送 API 请求
                response = requests.post(api_endpoint, json=item)
                if response.status_code == 200:
                    # 处理成功响应
                    print("API request successful")
                else:
                    # 处理错误响应
                    print(f"API request failed with status code: {response.status_code}")
            except requests.exceptions.RequestException as e:
                # 处理请求异常
                print(f"Request exception: {e}")

# 对 Kafka 数据流进行处理
kafkaStream.foreachRDD(process_data)

# 启动 Spark Streaming 上下文
ssc.start()
ssc.awaitTermination()

在上述代码中:

  • 增加了对数据的校验,只处理包含特定键的有效数据。
  • 在发送 API 请求时,处理了不同的响应状态码和可能的请求异常。

请注意,您需要根据实际的 API 接口和数据要求来进一步完善数据校验、错误处理和响应处理的逻辑。同时,还需要将 api_endpoint 替换为实际的 API 端点,并根据 API 的要求设置正确的请求方法和数据格式。

相关推荐
智象科技9 小时前
CMDB报表体系如何驱动智能运维
大数据·运维·报表·一体化运维·cmdb
yumgpkpm10 小时前
华为鲲鹏 Aarch64 环境下多 Oracle 数据库汇聚操作指南 CMP(类 Cloudera CDP 7.3)
大数据·hive·hadoop·elasticsearch·zookeeper·big data·cloudera
howard200510 小时前
初次使用基于K3S的大数据平台
大数据·k3s·cloudeon
Lansonli10 小时前
大数据Spark(六十九):Transformation转换算子intersection和subtract使用案例
大数据·分布式·spark
太阳伞下的阿呆10 小时前
kafka与zero-copy
分布式·kafka
TDengine (老段)10 小时前
TDengine 数据函数 LEAST 用户手册
大数据·数据库·sql·时序数据库·tdengine
Elastic 中国社区官方博客10 小时前
AI Agent 评估:Elastic 如何测试代理框架
大数据·人工智能·elasticsearch·搜索引擎
JAVA学习通11 小时前
开源 | MeiGen-MultiTalk:基于单张照片实现多人互动演绎
大数据·音视频·视频
金纬软件111 小时前
电脑监控软件有哪些?企业监控软件应该怎么选?
大数据·运维
武子康13 小时前
大数据-128 - Flink 并行度详解:从概念到最佳实践,一文读懂任务并行执行机制 代码示例与性能优化
大数据·后端·flink