Spark 和 Kafka 处理 API 请求与返回数据DEMO

以下是一个更详细的使用 Spark 和 Kafka 处理 API 请求与返回数据,并保障其正常性的示例代码。这个示例代码增加了一些错误处理和数据校验的逻辑:

python 复制代码
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
import json
import requests
import time

# 创建 SparkContext 和 StreamingContext
sc = SparkContext(appName="KafkaStreamingWithAPI")
ssc = StreamingContext(sc, 5)  # 每 5 秒处理一次数据

# Kafka 配置
kafkaParams = {
    "bootstrap.servers": "localhost:9092",
    "group.id": "spark-streaming-group"
}

# 定义要订阅的 Kafka 主题
topics = ["your_kafka_topic"]

# 从 Kafka 读取数据
kafkaStream = KafkaUtils.createDirectStream(ssc, topics, kafkaParams)

# API 端点
api_endpoint = "http://your_api_endpoint.com/api"

# 处理接收到的消息
def process_data(rdd):
    if not rdd.isEmpty():
        data = rdd.map(lambda x: json.loads(x[1]))
        
        # 数据校验
        valid_data = [item for item in data if 'key_you_expect' in item]
        
        for item in valid_data:
            try:
                # 发送 API 请求
                response = requests.post(api_endpoint, json=item)
                if response.status_code == 200:
                    # 处理成功响应
                    print("API request successful")
                else:
                    # 处理错误响应
                    print(f"API request failed with status code: {response.status_code}")
            except requests.exceptions.RequestException as e:
                # 处理请求异常
                print(f"Request exception: {e}")

# 对 Kafka 数据流进行处理
kafkaStream.foreachRDD(process_data)

# 启动 Spark Streaming 上下文
ssc.start()
ssc.awaitTermination()

在上述代码中:

  • 增加了对数据的校验,只处理包含特定键的有效数据。
  • 在发送 API 请求时,处理了不同的响应状态码和可能的请求异常。

请注意,您需要根据实际的 API 接口和数据要求来进一步完善数据校验、错误处理和响应处理的逻辑。同时,还需要将 api_endpoint 替换为实际的 API 端点,并根据 API 的要求设置正确的请求方法和数据格式。

相关推荐
人大博士的交易之路1 小时前
今日行情明日机会——20250606
大数据·数学建模·数据挖掘·数据分析·涨停回马枪
HAPPY酷4 小时前
Kafka 和Redis 在系统架构中的位置
redis·kafka·系统架构
Leo.yuan4 小时前
数据库同步是什么意思?数据库架构有哪些?
大数据·数据库·oracle·数据分析·数据库架构
忆雾屿4 小时前
云原生时代 Kafka 深度实践:06原理剖析与源码解读
java·后端·云原生·kafka
SelectDB技术团队5 小时前
从 ClickHouse、Druid、Kylin 到 Doris:网易云音乐 PB 级实时分析平台降本增效
大数据·数据仓库·clickhouse·kylin·实时分析
Web极客码6 小时前
在WordPress上添加隐私政策页面
大数据·人工智能·wordpress
TCChzp6 小时前
Kafka入门-消费者
分布式·kafka
Apache Flink6 小时前
Flink在B站的大规模云原生实践
大数据·云原生·flink
itachi-uchiha8 小时前
Docker部署Hive大数据组件
大数据·hive·docker
viperrrrrrrrrr78 小时前
大数据学习(131)-Hive数据分析函数总结
大数据·hive·学习