Spark 和 Kafka 处理 API 请求与返回数据DEMO

以下是一个更详细的使用 Spark 和 Kafka 处理 API 请求与返回数据,并保障其正常性的示例代码。这个示例代码增加了一些错误处理和数据校验的逻辑:

python 复制代码
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
import json
import requests
import time

# 创建 SparkContext 和 StreamingContext
sc = SparkContext(appName="KafkaStreamingWithAPI")
ssc = StreamingContext(sc, 5)  # 每 5 秒处理一次数据

# Kafka 配置
kafkaParams = {
    "bootstrap.servers": "localhost:9092",
    "group.id": "spark-streaming-group"
}

# 定义要订阅的 Kafka 主题
topics = ["your_kafka_topic"]

# 从 Kafka 读取数据
kafkaStream = KafkaUtils.createDirectStream(ssc, topics, kafkaParams)

# API 端点
api_endpoint = "http://your_api_endpoint.com/api"

# 处理接收到的消息
def process_data(rdd):
    if not rdd.isEmpty():
        data = rdd.map(lambda x: json.loads(x[1]))
        
        # 数据校验
        valid_data = [item for item in data if 'key_you_expect' in item]
        
        for item in valid_data:
            try:
                # 发送 API 请求
                response = requests.post(api_endpoint, json=item)
                if response.status_code == 200:
                    # 处理成功响应
                    print("API request successful")
                else:
                    # 处理错误响应
                    print(f"API request failed with status code: {response.status_code}")
            except requests.exceptions.RequestException as e:
                # 处理请求异常
                print(f"Request exception: {e}")

# 对 Kafka 数据流进行处理
kafkaStream.foreachRDD(process_data)

# 启动 Spark Streaming 上下文
ssc.start()
ssc.awaitTermination()

在上述代码中:

  • 增加了对数据的校验,只处理包含特定键的有效数据。
  • 在发送 API 请求时,处理了不同的响应状态码和可能的请求异常。

请注意,您需要根据实际的 API 接口和数据要求来进一步完善数据校验、错误处理和响应处理的逻辑。同时,还需要将 api_endpoint 替换为实际的 API 端点,并根据 API 的要求设置正确的请求方法和数据格式。

相关推荐
火山引擎开发者社区1 天前
两大模型发布!豆包大模型日均使用量突破 50 万亿 Tokens
大数据·人工智能
Hello.Reader1 天前
Flink SQL 的 UNLOAD MODULE 模块卸载、会话隔离与常见坑
大数据·sql·flink
禾高网络1 天前
互联网医院系统,互联网医院系统核心功能及技术
java·大数据·人工智能·小程序
AI营销实验室1 天前
原圈科技AI CRM系统:数据闭环与可视化革新的行业突破
大数据·人工智能
Deepoch1 天前
仓储智能化新思路:以“渐进式升级”破解物流机器人改造难题
大数据·人工智能·机器人·物流·具身模型·deepoc·物流机器人
シ風箏1 天前
Flink【基础知识 01】简介+核心架构+分层API+集群架构+应用场景+特点优势(一篇即可大概了解Flink)
大数据·架构·flink·bigdata
Dxy12393102161 天前
Elasticsearch如何做向量搜索
大数据·elasticsearch
jkyy20141 天前
AI赋能膳食管理:健康有益助力企业实现精准营养升级
大数据·人工智能·科技·物联网·健康医疗
cui_win1 天前
Elasticsearch 分片满了?「cluster.max_shards_per_node」报错
大数据·elasticsearch·搜索引擎
老徐电商数据笔记1 天前
技术复盘第二篇:电商数据主题域划分企业级实践
大数据·数据库·数据仓库·零售·教育电商·技术面试