Spark 和 Kafka 处理 API 请求与返回数据DEMO

以下是一个更详细的使用 Spark 和 Kafka 处理 API 请求与返回数据,并保障其正常性的示例代码。这个示例代码增加了一些错误处理和数据校验的逻辑:

python 复制代码
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
import json
import requests
import time

# 创建 SparkContext 和 StreamingContext
sc = SparkContext(appName="KafkaStreamingWithAPI")
ssc = StreamingContext(sc, 5)  # 每 5 秒处理一次数据

# Kafka 配置
kafkaParams = {
    "bootstrap.servers": "localhost:9092",
    "group.id": "spark-streaming-group"
}

# 定义要订阅的 Kafka 主题
topics = ["your_kafka_topic"]

# 从 Kafka 读取数据
kafkaStream = KafkaUtils.createDirectStream(ssc, topics, kafkaParams)

# API 端点
api_endpoint = "http://your_api_endpoint.com/api"

# 处理接收到的消息
def process_data(rdd):
    if not rdd.isEmpty():
        data = rdd.map(lambda x: json.loads(x[1]))
        
        # 数据校验
        valid_data = [item for item in data if 'key_you_expect' in item]
        
        for item in valid_data:
            try:
                # 发送 API 请求
                response = requests.post(api_endpoint, json=item)
                if response.status_code == 200:
                    # 处理成功响应
                    print("API request successful")
                else:
                    # 处理错误响应
                    print(f"API request failed with status code: {response.status_code}")
            except requests.exceptions.RequestException as e:
                # 处理请求异常
                print(f"Request exception: {e}")

# 对 Kafka 数据流进行处理
kafkaStream.foreachRDD(process_data)

# 启动 Spark Streaming 上下文
ssc.start()
ssc.awaitTermination()

在上述代码中:

  • 增加了对数据的校验,只处理包含特定键的有效数据。
  • 在发送 API 请求时,处理了不同的响应状态码和可能的请求异常。

请注意,您需要根据实际的 API 接口和数据要求来进一步完善数据校验、错误处理和响应处理的逻辑。同时,还需要将 api_endpoint 替换为实际的 API 端点,并根据 API 的要求设置正确的请求方法和数据格式。

相关推荐
Elastic 中国社区官方博客33 分钟前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
Aloudata2 小时前
从Apache Atlas到Aloudata BIG,数据血缘解析有何改变?
大数据·apache·数据血缘·主动元数据·数据链路
水豚AI课代表2 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
拓端研究室TRL5 小时前
【梯度提升专题】XGBoost、Adaboost、CatBoost预测合集:抗乳腺癌药物优化、信贷风控、比特币应用|附数据代码...
大数据
黄焖鸡能干四碗5 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
编码小袁5 小时前
探索数据科学与大数据技术专业本科生的广阔就业前景
大数据
WeeJot嵌入式6 小时前
大数据治理:确保数据的可持续性和价值
大数据
杨荧6 小时前
【JAVA毕业设计】基于Vue和SpringBoot的服装商城系统学科竞赛管理系统
java·开发语言·vue.js·spring boot·spring cloud·java-ee·kafka
zmd-zk7 小时前
kafka+zookeeper的搭建
大数据·分布式·zookeeper·中间件·kafka
激流丶7 小时前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic