神经网络的常用激活函数

激活函数

Sigmoid

曲线图如下:

实现方法:

python 复制代码
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
#定义x的取值范围
x = np.linspace(-10,10,100)
#直接使用tensorflow实现
y = tf.nn.sigmoid(x)
#绘图
plt.plot(x,y)
plt.grid()
plt.show()

Tanh(双曲正切曲线)

实现方法:

python 复制代码
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
#定义x的取值范围
x = np.linspace(-10,10,100)
#直接使用tensorflow实现
y = tf.nn.tanh(x)
#绘图
plt.plot(x,y)
plt.grid()
plt.show()

RELU


实现方法:

python 复制代码
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
#定义x的取值范围
x = np.linspace(-10,10,100)
#直接使用tensorflow实现
y = tf.nn.relu(x)
#绘图
plt.plot(x,y)
plt.grid()
plt.show()

LeakyRelu

实现方法:

python 复制代码
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
#定义x的取值范围
x = np.linspace(-10,10,100)
#直接使用tensorflow实现
y = tf.nn.leaky_relu(x)
#绘图
plt.plot(x,y)
plt.grid()
plt.show()

softmax

实现方法:

python 复制代码
import tensorflow as tf
import matplotlib.pyplot as plt
x = tf.constant([0.2,0.02,0.15,1.3,0.5,0.06,1.1,0.05,3.75])
y = tf.nn.softmax(x)
plt.plot(x,y)
plt.grid()
plt.show()
相关推荐
AIGC安琪9 分钟前
Transformer中的编码器和解码器是什么?
人工智能·深度学习·ai·语言模型·大模型·transformer·ai大模型
算家计算20 分钟前
3秒搞定产品换装换背景!【ComfyUI-万物迁移工作流】本地部署教程:基于FLUX.1 Kontext上下文感知图像编辑
人工智能
山烛29 分钟前
OpenCV 图像处理基础操作指南(二)
人工智能·python·opencv·计算机视觉
聚客AI40 分钟前
🧩万亿级Token训练!解密大模型预训练算力黑洞与RLHF对齐革命
人工智能·llm·强化学习
CoovallyAIHub1 小时前
线性复杂度破局!Swin Transformer 移位窗口颠覆高分辨率视觉建模
深度学习·算法·计算机视觉
爱疯生活1 小时前
车e估牵头正式启动乘用车金融价值评估师编制
大数据·人工智能·金融
JXL18601 小时前
机器学习概念(面试题库)
人工智能·机器学习
星期天要睡觉1 小时前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
岁月静好20251 小时前
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
人工智能·机器学习
说私域2 小时前
基于开源 AI 大模型 AI 智能名片 S2B2C 商城小程序视角下的企业组织能力建设与破圈升级
人工智能·小程序