PyTorch LSTM 单步、多步时间预测
多维输入、多维输出;单步预测、多步滚动预测
python
import torch
import torch.nn as nn
import torch.optim as optim
class LSTMModel(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, output_dim):
super(LSTMModel, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
# 超参数
input_dim = 400
hidden_dim = 64
num_layers = 2
output_dim = 1
num_epochs = 100
learning_rate = 0.001
batch_size = 32
# 初始化模型、损失函数和优化器
model = LSTMModel(input_dim, hidden_dim, num_layers, output_dim)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 示例训练代码(假设已经定义了train_loader)
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(train_loader):
model.train()
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item():.4f}')
# 保存模型
torch.save(model.state_dict(), 'lstm_model_single_step.pth')
# 多步预测函数
def multi_step_predict(model, input_seq, future_steps):
model.eval() # 切换到评估模式
predictions = []
input_seq = input_seq.unsqueeze(0) # 增加batch维度,shape变为 (1, seq_len, input_dim)
for _ in range(future_steps):
with torch.no_grad(): # 禁用梯度计算
pred = model(input_seq) # 预测下一个时间步
predictions.append(pred.item()) # 存储预测值
# 更新输入序列,将预测值添加到末尾,并移除最早的一个时间步
input_seq = torch.cat((input_seq[:, 1:, :], pred.unsqueeze(0).unsqueeze(2)), dim=1)
return predictions
# 示例调用
initial_input_seq = torch.randn(1, 155, 400) # 假设这是的初始输入
future_steps = 10
predictions = multi_step_predict(model, initial_input_seq, future_steps)
print(predictions)