PyTorch LSTM 单步、多步时间预测

PyTorch LSTM 单步、多步时间预测

多维输入、多维输出;单步预测、多步滚动预测

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim

class LSTMModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_layers, output_dim):
        super(LSTMModel, self).__init__()
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).to(x.device)
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).to(x.device)
        out, _ = self.lstm(x, (h0, c0))
        out = self.fc(out[:, -1, :])
        return out

# 超参数
input_dim = 400
hidden_dim = 64
num_layers = 2
output_dim = 1
num_epochs = 100
learning_rate = 0.001
batch_size = 32

# 初始化模型、损失函数和优化器
model = LSTMModel(input_dim, hidden_dim, num_layers, output_dim)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# 示例训练代码(假设已经定义了train_loader)
for epoch in range(num_epochs):
    for i, (inputs, labels) in enumerate(train_loader):
        model.train()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if (i+1) % 100 == 0:
            print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item():.4f}')

# 保存模型
torch.save(model.state_dict(), 'lstm_model_single_step.pth')

# 多步预测函数
def multi_step_predict(model, input_seq, future_steps):
    model.eval()  # 切换到评估模式
    predictions = []

    input_seq = input_seq.unsqueeze(0)  # 增加batch维度,shape变为 (1, seq_len, input_dim)

    for _ in range(future_steps):
        with torch.no_grad():  # 禁用梯度计算
            pred = model(input_seq)  # 预测下一个时间步
        predictions.append(pred.item())  # 存储预测值

        # 更新输入序列,将预测值添加到末尾,并移除最早的一个时间步
        input_seq = torch.cat((input_seq[:, 1:, :], pred.unsqueeze(0).unsqueeze(2)), dim=1)

    return predictions

# 示例调用
initial_input_seq = torch.randn(1, 155, 400)  # 假设这是的初始输入
future_steps = 10
predictions = multi_step_predict(model, initial_input_seq, future_steps)
print(predictions)
相关推荐
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
隐语SecretFlow3 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
木头左3 天前
基于LSTM与3秒级Tick数据的金融时间序列预测实现
人工智能·金融·lstm
Billy_Zuo3 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈3 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy3 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
九章云极AladdinEdu3 天前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
研梦非凡3 天前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
通街市密人有3 天前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
智数研析社3 天前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗