开源模型应用落地-FastAPI-助力模型交互-进阶篇-Request&Dataclasses(三)

一、前言

FastAPI 的高级用法可以为开发人员带来许多好处。它能帮助实现更复杂的路由逻辑和参数处理,使应用程序能够处理各种不同的请求场景,提高应用程序的灵活性和可扩展性。

在数据验证和转换方面,高级用法提供了更精细和准确的控制,确保输入数据的质量和安全性。它还能更高效地处理异步操作,提升应用程序的性能和响应速度,特别是在处理大量并发请求时优势明显。

此外,高级用法还有助于更好地整合数据库操作、实现数据的持久化和查询优化,以及实现更严格的认证和授权机制,保护应用程序的敏感数据和功能。总之,掌握 FastAPI 的高级用法可以帮助开发人员构建出功能更强大、性能更卓越、安全可靠的 Web 应用程序。

本篇学习如何在FastAPI中直接使用Request对象和如何使用数据类Dataclasses。


二、术语

2.1. Request对象

是用于处理 HTTP 请求的核心对象,它提供了许多功能和属性,以便更灵活地处理和访问客户端发送的请求信息。例如:获取客户端的IP地址/主机,可以通过访问Request对象来实现。

2.2. middleware函数

middleware函数(中间件)它在每个请求被特定的路径操作处理之前,以及在每个响应返回之前工作。可以用于实现多种通用功能,例如身份验证、日志记录、错误处理、请求处理、缓存等。其主要作用是在请求和响应的处理过程中添加额外的处理逻辑,而无需在每个具体的路由处理函数中重复编写这些逻辑。

一般在碰到以下需求场景时,可以考虑使用中间件来实现:

  1. 身份验证:验证请求的身份,如检查 JWT token 或使用 OAuth2 进行验证;
  2. 日志记录:记录请求和响应的日志,包括请求方法、URL、响应状态码等信息;
  3. 错误处理:处理应用程序中的异常情况,捕获异常并返回自定义的错误响应;
  4. 请求处理:对请求进行处理,例如解析请求参数、验证请求数据等;
  5. 缓存:在中间件中检查缓存中是否存在请求的响应,如果存在则直接返回缓存的响应。

2.3. dataclasses

表示类和函数的一种轻量级数据定义方式。通过 @dataclass 装饰的数据类具有以下特点和优势:

  1. 自动生成方法:无需手动编写繁琐的 __init____repr__ 等方法,装饰器会自动添加这些方法。
  2. 默认值和类型提示:可以为属性设置默认值,并添加类型提示,提高代码的可读性和可维护性。
  3. 不可变实例:通过设置 frozen=True,可以创建不可变的实例,增加代码的稳定性,防止对象被意外修改。
  4. 类型检查和验证:支持类型检查和验证,可使用 field 函数添加对属性的验证规则。
  5. 自动生成合理的 __repr____eq__ 方法:方便比较和输出对象。
  6. 继承和默认值工厂:支持继承和默认值工厂,使复杂的类层次结构定义更简单。
  7. 可转换为字典或元组:提供了 asdictastuple 函数,方便将数据类实例转换为字典或元组。

三、前置条件

3.1. 创建虚拟环境&安装依赖

bash 复制代码
conda create -n fastapi_test python=3.10
conda activate fastapi_test
pip install fastapi uvicorn

四、技术实现

4.1. 使用Request对象实现黑名单访问拦截

python 复制代码
# -*- coding: utf-8 -*-
import uvicorn
from fastapi import FastAPI, Request, HTTPException
from starlette import status

app = FastAPI()

black_list = ['192.168.102.88']

@app.middleware("http")
async def my_middleware(request: Request, call_next):
    client_host = request.client.host
    print(f"client_host: {client_host}")

    if client_host in black_list:
        raise HTTPException(
            status_code=status.HTTP_403_FORBIDDEN,
            detail="Prohibit access"
        )
    else:
        response = await call_next(request)
        return response

@app.get("/items/")
async def read_items():
    return [{"item_id": "Foo"}]

if __name__ == '__main__':
    uvicorn.run(app, host='0.0.0.0',port=7777)

调用结果:

正常访问,未命中黑名单:

非法访问,命中黑名单:

4.2. 使用dataclasses

python 复制代码
# -*- coding: utf-8 -*-
import uvicorn
from fastapi import FastAPI
from dataclasses import dataclass
from typing import Union


app = FastAPI()

@dataclass
class Item:
    name: str
    price: float
    description: Union[str, None] = None
    tax: Union[float, None] = None

@app.post("/items/")
async def read_items(item: Item):
    print(f'item: {item}')
    return item

if __name__ == '__main__':
    uvicorn.run(app, host='0.0.0.0',port=7777)

调用结果:

使用pycharm的Http Request功能进行测试

选择POST Text Body,自动创建请求模版

修改IP和端口,填写请求参数

执行并观察结果


五、附带说明

5.1.不使用dataclasses的示例

python 复制代码
# -*- coding: utf-8 -*-
import uvicorn
from fastapi import FastAPI
from typing import Union


app = FastAPI()


@app.post("/items1")
async def read_items(name: str,price: float,description: Union[str, None],tax: Union[float, None] ):
    item = Item(name= name,price=price,description=description,tax=tax)
    return item

if __name__ == '__main__':
    uvicorn.run(app, host='0.0.0.0',port=7777)

调用结果:

使用pycharm的Http Request功能进行测试

使用dataclasses vs 不使用dataclasses 说明:

  1. 使用dataclasses,代码更加简洁、易读,并且不易出错
  2. 使用dataclasses,使得代码在不同的上下文中更易于使用和扩展
  3. 使用dataclasses,增强了代码的可读性和可维护性。
相关推荐
孙同学要努力2 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Jina AI3 小时前
RAG 系统的分块难题:小型语言模型如何找到最佳断点?
人工智能·语言模型·自然语言处理
-派神-3 小时前
大语言模型(LLM)量化基础知识(一)
人工智能·语言模型·自然语言处理
sniper_fandc4 小时前
深度学习基础—循环神经网络的梯度消失与解决
人工智能·rnn·深度学习
weixin_518285054 小时前
深度学习笔记10-多分类
人工智能·笔记·深度学习
龙的爹23335 小时前
论文 | Legal Prompt Engineering for Multilingual Legal Judgement Prediction
人工智能·语言模型·自然语言处理·chatgpt·prompt
阿_旭5 小时前
基于YOLO11/v10/v8/v5深度学习的维修工具检测识别系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·qt·ai
YRr YRr5 小时前
深度学习:Cross-attention详解
人工智能·深度学习
阿_旭5 小时前
基于YOLO11/v10/v8/v5深度学习的煤矿传送带异物检测系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·目标检测·yolo11
算家云6 小时前
如何在算家云搭建Aatrox-Bert-VITS2(音频生成)
人工智能·深度学习·aigc·模型搭建·音频生成·算家云