昇思25天学习打卡营第16天|LLM-MindNLP ChatGLM-6B StreamChat

打卡

目录

打卡

任务说明

环境配置

部署方式

[ChatGLM-6B 体验截图示例](#ChatGLM-6B 体验截图示例)

[ChatGLM-6B 模型结构解析如下](#ChatGLM-6B 模型结构解析如下)

[ChatGLM2-6B 模型结构解析如下](#ChatGLM2-6B 模型结构解析如下)


任务说明

加载智谱清言的chatglm模型权重文件(目前有4个版本),本次主要尝试了chatglm-6b。

chatglm 6b 在提供的本次实验npu卡中可以正常加载,加载2和3版本时加载tokenizer出错了。但是可以看到model的打印结果,看到chatglm2 和 chatglm3 的模型结构相比1版本,词表扩充了2w+。而我们知道chatglm3-6b 还具有了 functional calling 功能。

环境配置

  • 欧拉操作系统2.0(SP8);
  • python3.9;
  • 华为 NPU 910A;
  • mindnlp, mindspore, mindvision 安装部署。
  • 其余安装:
python 复制代码
!pip install mdtex2html
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14

部署方式

python 复制代码
from mindnlp.transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import gradio as gr
import mdtex2html


### 下载 && 加载模型权重 
model = AutoModelForSeq2SeqLM.from_pretrained(
            'ZhipuAI/ChatGLM-6B', 
            mirror="modelscope").half()
model.set_train(False)

tokenizer = AutoTokenizer.from_pretrained(
            'ZhipuAI/ChatGLM-6B', 
             mirror="modelscope")

### 修改参数和prompt体验模型
prompt = '你好'
history = []
response, _ = model.chat(tokenizer, prompt, history=history, max_length=20)
response

ChatGLM-6B体验截图示例

如上图,ChatGLM-6B tokenzier 的词表大小是 13w+,有5种特殊的 token。

如下为模型打印结果。

ChatGLM-6B 模型结构解析如下

1. 1级主类: ChatGLMForConditionalGeneration 生成式Transformer模型,用于条件文本生成。

2. 2级类: ChatGLMModel 层,是transformer 结构,是模型的核心部分。

3. 2级类: lm_head 结构的 Dense 全连接层。dim[in, out]=[4096, 130528]

4. ChatGLMModel 结构下的3级类组件分三层:

>> word_embeddings 嵌入层:dim[in, out]=[130528, 4096] ,即使用了 130528 个词汇,每个词汇映射到一个4096维的向量。

>> layers 网络结构层 :Transformer模型的主体,包含 28 个GLMBlock

>> final_layernorm最后的层归一化。

5. GLMBlock 的结构:

》》1 input_layernorm层,层归一化,用于在注意力机制之前对输入进行归一化。

》》2 SelfAttention层,自注意力机制,用于计算输入序列中不同位置的注意力权重。共包括3层:RotaryEmbedding 旋转嵌入,用于增强模型对位置信息的处理能力; Dense(query_key_value)用于生成查询(Q)、键(K)和值(V)向量;Dense(Dense)用于自注意力机制的输出。。

》》3 post_attention_layernorm层,用于自注意力之后的归一化。

》》4 mlp 层 ,多层感知机,用于对自注意力层的输出进行进一步的非线性变换。这里的MLP使用的是GLU(门控线性单元)激活函数。dense_h_to_4h 线性变换将输入维度扩大4倍。dense_4h_to_h 将扩大后的维度还原。

如下图,chatglm-6b model 的打印结果。

python 复制代码
$ print(model)

ChatGLMForConditionalGeneration<
  (transformer): ChatGLMModel<
    (word_embeddings): Embedding<vocab_size=130528, embedding_size=4096, use_one_hot=False, weight=Parameter (Tensor(shape=[130528, 4096], dtype=Float16, value=[...], name=transformer.word_embeddings.weight), requires_grad=True), dtype=Float16, padding_idx=None>
    (layers): CellList<
      (0): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.0.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.0.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.0.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.0.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (1): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.1.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.1.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.1.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.1.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (2): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.2.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.2.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.2.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.2.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (3): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.3.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.3.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.3.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.3.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (4): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.4.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.4.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.4.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.4.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (5): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.5.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.5.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.5.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.5.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (6): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.6.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.6.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.6.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.6.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (7): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.7.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.7.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.7.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.7.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (8): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.8.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.8.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.8.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.8.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (9): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.9.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.9.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.9.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.9.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (10): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.10.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.10.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.10.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.10.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (11): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.11.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.11.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.11.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.11.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (12): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.12.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.12.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.12.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.12.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (13): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.13.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.13.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.13.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.13.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (14): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.14.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.14.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.14.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.14.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (15): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.15.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.15.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.15.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.15.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (16): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.16.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.16.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.16.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.16.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (17): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.17.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.17.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.17.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.17.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (18): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.18.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.18.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.18.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.18.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (19): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.19.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.19.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.19.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.19.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (20): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.20.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.20.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.20.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.20.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (21): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.21.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.21.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.21.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.21.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (22): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.22.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.22.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.22.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.22.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (23): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.23.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.23.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.23.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.23.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (24): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.24.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.24.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.24.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.24.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (25): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.25.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.25.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.25.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.25.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (26): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.26.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.26.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.26.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.26.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (27): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.27.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.27.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.27.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.27.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      >
    (final_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.final_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.final_layernorm.bias), requires_grad=True)>
    >
  (lm_head): Dense<input_channels=4096, output_channels=130528>
  >

ChatGLM2-6B 模型结构解析如下

如下图,chatglm2-6b model 的打印结果。相比于1版本,模型结构没有变化,只是vocab_size词表扩充成了15w+

python 复制代码
$ print(model)


ChatGLMForConditionalGeneration<
  (transformer): ChatGLMModel<
    (word_embeddings): Embedding<vocab_size=150528, embedding_size=4096, use_one_hot=False, weight=Parameter (Tensor(shape=[150528, 4096], dtype=Float16, value=[...], name=transformer.word_embeddings.weight), requires_grad=True), dtype=Float16, padding_idx=None>
    (layers): CellList<
      (0): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.0.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.0.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.0.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.0.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (1): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.1.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.1.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.1.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.1.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (2): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.2.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.2.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.2.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.2.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (3): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.3.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.3.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.3.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.3.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (4): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.4.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.4.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.4.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.4.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (5): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.5.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.5.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.5.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.5.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (6): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.6.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.6.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.6.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.6.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (7): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.7.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.7.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.7.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.7.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (8): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.8.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.8.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.8.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.8.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (9): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.9.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.9.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.9.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.9.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (10): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.10.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.10.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.10.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.10.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (11): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.11.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.11.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.11.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.11.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (12): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.12.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.12.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.12.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.12.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (13): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.13.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.13.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.13.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.13.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (14): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.14.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.14.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.14.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.14.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (15): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.15.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.15.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.15.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.15.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (16): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.16.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.16.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.16.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.16.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (17): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.17.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.17.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.17.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.17.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (18): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.18.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.18.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.18.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.18.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (19): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.19.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.19.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.19.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.19.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (20): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.20.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.20.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.20.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.20.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (21): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.21.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.21.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.21.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.21.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (22): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.22.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.22.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.22.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.22.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (23): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.23.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.23.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.23.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.23.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (24): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.24.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.24.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.24.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.24.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (25): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.25.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.25.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.25.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.25.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (26): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.26.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.26.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.26.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.26.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      (27): GLMBlock<
        (input_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.27.input_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.27.input_layernorm.bias), requires_grad=True)>
        (attention): SelfAttention<
          (rotary_emb): RotaryEmbedding<>
          (query_key_value): Dense<input_channels=4096, output_channels=12288, has_bias=True>
          (dense): Dense<input_channels=4096, output_channels=4096, has_bias=True>
          >
        (post_attention_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.27.post_attention_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.layers.27.post_attention_layernorm.bias), requires_grad=True)>
        (mlp): GLU<
          (dense_h_to_4h): Dense<input_channels=4096, output_channels=16384, has_bias=True>
          (dense_4h_to_h): Dense<input_channels=16384, output_channels=4096, has_bias=True>
          >
        >
      >
    (final_layernorm): LayerNorm<normalized_shape=[4096], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.final_layernorm.weight), requires_grad=True), bias=Parameter (Tensor(shape=[4096], dtype=Float16, value=[...], name=transformer.final_layernorm.bias), requires_grad=True)>
    >
  (lm_head): Dense<input_channels=4096, output_channels=150528>
  >
相关推荐
降世神童15 分钟前
华为云Flexus+DeepSeek征文| 使用华为云CCE容器部署Dify-LLM高可用方案的验证与测试
运维·华为云·aigc
降世神童15 分钟前
华为云Flexus+DeepSeek征文| 基于华为云Dify-LLM高可用平台开发运维故障处理智能体
运维·华为云·aigc
cooldream200916 分钟前
华为云Flexus+DeepSeek征文|利用华为云一键部署 Dify 平台并接入 DeepSeek 大模型,构建长篇文章生成助手
大模型·华为云·dify
Linux猿19 分钟前
华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify 快速构建联网搜索助手
华为云·华为云服务·华为云征文·联网搜索助手·华为云flexus云服务
江湖有缘22 分钟前
华为云Flexus+DeepSeek征文|基于 Dify-LLM 构建网站智能客服助手的实践探索
华为云
you458030 分钟前
小程序学习笔记:使用 MobX 实现全局数据共享,实例创建、计算属性与 Actions 方法
笔记·学习·小程序
笑衬人心。33 分钟前
初学Spring AI 笔记
人工智能·笔记·spring
luofeiju43 分钟前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
测试者家园1 小时前
基于DeepSeek和crewAI构建测试用例脚本生成器
人工智能·python·测试用例·智能体·智能化测试·crewai
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程