Opencv学习项目3——人脸识别

上一个项目我们使用2个函数检测了两张图片的人脸是否为同一个人,这次我们将他的相似度使用face_distance来显示

face_distance函数参数说明

face_recognition.face_distance(known_face_encodings, face_to_compare)

参数说明

  • known_face_encodings: 这是一个列表,包含了已知的多个人脸编码(通常是从已知的图像中提取得到的)。每个人脸编码是一个128维的向量。

  • face_to_compare: 这是一个单独的人脸编码,通常是从另一张图像中提取的。也是一个128维的向量。

返回值

  • 函数返回一个包含浮点数的数组,表示 face_to_compareknown_face_encodings 中每个人脸编码之间的欧氏距离。

功能和用途

  • 欧氏距离计算: 对于每个人脸编码对,函数计算其欧氏距离。欧氏距离越小,表示两个人脸编码之间越相似。

  • 相似度比较: 通过比较欧氏距离,可以判断两个人脸是否属于同一个人,或者在人脸识别任务中,用于识别最相似的人脸。

接下来我们来看代码

代码实现

复制代码
import cv2
import face_recognition

# 加载图像文件
img1 = face_recognition.load_image_file('lyf1.png')
img2 = face_recognition.load_image_file('lyf2.png')
# 将图像从 BGR 格式转换为 RGB 格式
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
# 第一个人的人脸位置信息
faceloc1 = face_recognition.face_locations(img1)[0]
faceloc2 = face_recognition.face_locations(img2)[0]
# 提取人脸编码
face_encoding1 = face_recognition.face_encodings(img1, [faceloc1])[0]
face_encoding2 = face_recognition.face_encodings(img2, [faceloc2])[0]
#框出人脸
cv2.rectangle(img1, (faceloc1[3], faceloc1[0]), (faceloc1[1], faceloc1[2]), (0, 255, 0), 3)
cv2.rectangle(img2, (faceloc2[3], faceloc2[0]), (faceloc2[1], faceloc2[2]), (0, 255, 0), 3)
#比对人脸特征
res = face_recognition.compare_faces([face_encoding1],face_encoding2)
facedis = face_recognition.face_distance([face_encoding1],face_encoding2)
print(res,round(facedis[0],2))
cv2.putText(img1,f'{res}{round(facedis[0],2)}',(50,50),cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),3)
#打印人脸位置信息
# print(faceloc1)
# print(faceloc2)

cv2.imshow('lyf1', img1)
cv2.imshow('lyf2', img2)
cv2.waitKey(0)

效果演示

这样就完成了

相关推荐
许白掰15 分钟前
Linux入门篇学习——借助 U 盘或 TF 卡拷贝程序到开发板上
linux·学习·借助 u 盘拷贝程序到开发板上·借助 tf卡拷贝程序到开发板上
倔强青铜三20 分钟前
苦练Python第23天:元组秘籍与妙用
人工智能·python·面试
AndrewHZ1 小时前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI1 小时前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
大咖分享课1 小时前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
lucky_lyovo1 小时前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn1 小时前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy1 小时前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
静心问道2 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域2 小时前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源