【目标检测】非极大值抑制(Non-Maximum Suppression, NMS)步骤与实现

步骤

  1. 置信度排序:首先根据预测框的置信度(即预测框包含目标物体的概率)对所有预测框进行降序排序。
  2. 选择最佳预测框:选择置信度最高的预测框作为参考框。
  3. 计算IoU:计算其他所有预测框与参考框的交并比(Intersection over Union, IoU)。
  4. 抑制:删除IoU高于某个阈值的所有预测框,因为这些框与参考框重叠太多,可能是重复预测。
  5. 迭代:从剩余的预测框中选择置信度最高的作为新的参考框,重复步骤3和4,直到所有预测框都被处理。

代码实现

导入必要的库

python 复制代码
import numpy as np

定义计算IoU的函数

python 复制代码
def iou(boxA, boxB):
    # 计算两个边界框的交集坐标
    xA = max(boxA[0], boxB[0])
    yA = max(boxA[1], boxB[1])
    xB = min(boxA[2], boxB[2])
    yB = min(boxA[3], boxB[3])
    
    # 计算交集面积
    interArea = max(0, xB - xA) * max(0, yB - yA)
    
    # 计算每个边界框的面积
    boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
    boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
    
    # 计算并集面积
    unionArea = boxAArea + boxBArea - interArea
    
    # 计算IoU
    iou = interArea / unionArea if unionArea != 0 else 0
    
    return iou

定义NMS函数

python 复制代码
def nms(boxes, scores, iou_threshold):
    picked = []  # 存储被选择的边界框索引
    indexes = np.argsort(scores)[::-1]  # 按分数降序排列索引
    
    while len(indexes) > 0:
        current = indexes[0]
        picked.append(current)  # 选择当前最高分的边界框
        indexes = indexes[1:]  # 移除当前最高分的索引
        
        # 检查剩余边界框与当前选择框的IoU,如果大于阈值则抑制
        indexes = [i for i in indexes if iou(boxes[current], boxes[i]) <= iou_threshold]
    
    return picked

示例使用

python 复制代码
# 假设boxes和scores是模型预测的边界框和分数
boxes = np.array([[50, 50, 100, 100], [60, 60, 110, 110], [200, 200, 300, 300]])
scores = np.array([0.9, 0.75, 0.8])

# 设置IoU阈值
iou_threshold = 0.5

# 执行NMS
picked_boxes = nms(boxes, scores, iou_threshold)

print("Selected box indices:", picked_boxes)

注意

  • 边界框通常以(x1, y1, x2, y2)的格式表示,其中(x1, y1)是左上角坐标,(x2, y2)是右下角坐标。

Code

完整示例代码已上传至:Machine Learning and Deep Learning Algorithms with NumPy

此项目包含更多AI相关的算法numpy实现,供大家学习参考使用,欢迎star~

备注

复制代码
个人水平有限,有问题随时交流~
相关推荐
金井PRATHAMA8 小时前
描述逻辑(Description Logic)对自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
Rock_yzh8 小时前
AI学习日记——参数的初始化
人工智能·python·深度学习·学习·机器学习
Hcoco_me8 小时前
YOLO入门教程(番外):目标检测的一阶段学习方法
yolo·目标检测·学习方法
CiLerLinux9 小时前
第四十九章 ESP32S3 WiFi 路由实验
网络·人工智能·单片机·嵌入式硬件
-dzk-10 小时前
【3DGS复现】Autodl服务器复现3DGS《简单快速》《一次成功》《新手练习复现必备》
运维·服务器·python·计算机视觉·3d·三维重建·三维
七芒星202311 小时前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
Learn Beyond Limits11 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
byzy12 小时前
【论文笔记】VisionPAD: A Vision-Centric Pre-training Paradigm for Autonomous Driving
论文阅读·深度学习·计算机视觉·自动驾驶
ACERT33312 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习
C嘎嘎嵌入式开发12 小时前
(一) 机器学习之深度神经网络
人工智能·神经网络·dnn