大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (正在更新...)

章节内容

上一节我们完成了:

  • RDB的配置方式、触发方式
  • RDB的文件结构、优点、缺点
  • AOF的配置方式、触发方式
  • AOF的优点、缺点、瘦身方式
  • RDB + AOF 混合方式

Redis性能

官方数据是:

  • 读 110000次/s
  • 写 81000次/s
    长期使用,Key会不断地增加,Redis作为缓存使用,物理内存也会满。
    所以需要一个过期淘汰的策略

MaxMemory

不设置的情况:

  • Redis 的 Key 是固定的,不会增加。
  • Redis 作为 DB 使用,保证数据的完整性,不允许淘汰,可以做集群进行扩展。

淘汰策略:禁止驱逐(默认设置)

设置的情况

Redis 作为缓存使用,不断地增加Key,MaxMemory默认是0不进行限制。

在服务器上,保留1G给操作系统,剩下的就可以用作Redis的缓存。

通过修改 redis.conf 可以配置这个值:

shell 复制代码
maxmemory 1024mb
# 获取值
CONFIG GET maxmemory

设置MaxMemory后,当趋近于设置的值时,通过缓存的淘汰策略,就会从内存中删除

Expire

最常用的方式)在 Redis 中可以使用 expire 设置一个键的存活时间,过了这段时间,键会自动被删除

可以进行如下的测试:

shell 复制代码
./redis-cli
# 2秒失效
expire name 2 
get name
# 这种是永久有效
set name 123
ttl name

# 设置过期时间
expire name 10
ttl name 

删除策略

Redis 数据的删除有定时删除惰性删除主动删除 三种方式。'

Redis 目前采用的是:

  • 惰性删除
  • 主动删除

定时删除

在设置键的过期时间时,创建一个定时器,让定时器在指定时间时删除键。

惰性删除

在 key 被访问的时候发现过期了,就删除这条数据。

主动删除

我们打开 redis.conf 可以配置主动删除的策略:

shell 复制代码
# 默认是 no-enviction 不删除
maxmemory-policy allkeys-lru

主动删除: LRU

LRU(Least Recently Used)最近最少使用,算法根据数据的历史访问记录来进行淘汰数据。

其核心思想是:如果数据最近被访问过,那么将来被访问的概率也会更高

最常见的实现是使用一个链表来保存数据:

  • 新数据插入到链表头部
  • 每当缓存命中的时候,则将数据移动到链表的头部
  • 链表满了的时候,将链表尾部数据删除
  • 在Java中可以使用LinkedHashMap来实现LRU

Redis-LRU

在服务器中保存了 LRU 计数器:server.lrulock,会定时更新,这个值是根据 server.unixtime 来计算的。

LRU的数据淘汰机制是:在数据集中随机挑选几个值,取出其中LRU最大的淘汰掉。

  • volatile-lru:从设置过期时间的数据集中挑选最少使用的淘汰
  • allkeys-lru:从数据集中挑选最近最少使用的数据淘汰

LFU

LFU(Least Frequency used)最不经常使用,如果一个数据在最近一段时间内使用次数很少,那么将来一段时间内被使用的可能性也很小。

  • volatile-lfu 同LRU
  • allkeys-lfu 同LRU
  • volatile-random 从设置过期时间的数据集中随机淘汰数据
  • allkeys-random 从数据集中任意选择进行淘汰

TTL

  • volatile-ttl 从设置过期时间的数据里,选择快要过期的数据淘汰

noenviction

禁止驱逐数据,不淘汰数据(默认的)

淘汰策略选择

  • allkeys-lru 在不确定时一般采用的策略 冷热数据交换
  • volatile-lruallkeys-lru性能要差,因为要查过期时间
  • allkeys-random 希望请求符合平均分布(每个值被访问的概率差不多)
  • 自己控制 volatile-ttl
相关推荐
fen_fen15 小时前
Oracle建表语句示例
数据库·oracle
易营宝15 小时前
多语言网站建设避坑指南:既要“数据同步”,又能“按市场个性化”,别踩这 5 个坑
大数据·人工智能
fanstuck16 小时前
从0到提交,如何用 ChatGPT 全流程参与建模比赛的
大数据·数学建模·语言模型·chatgpt·数据挖掘
春日见16 小时前
vscode代码无法跳转
大数据·人工智能·深度学习·elasticsearch·搜索引擎
萤丰信息17 小时前
AI 筑基・生态共荣:智慧园区的价值重构与未来新途
大数据·运维·人工智能·科技·智慧城市·智慧园区
砚边数影17 小时前
数据可视化入门:Matplotlib 基础语法与折线图绘制
数据库·信息可视化·matplotlib·数据可视化·kingbase·数据库平替用金仓·金仓数据库
orange_tt17 小时前
Djiango配置Celery
数据库·sqlite
云小逸18 小时前
【nmap源码学习】 Nmap网络扫描工具深度解析:从基础参数到核心扫描逻辑
网络·数据库·学习
肉包_51118 小时前
两个数据库互锁,用全局变量互锁会偶发软件卡死
开发语言·数据库·c++
霖霖总总18 小时前
[小技巧64]深入解析 MySQL InnoDB 的 Checkpoint 机制:原理、类型与调优
数据库·mysql