NLP基础知识2【各种大模型的注意力】

注意力

传统Attention存在的问题

  1. 上下文约束
  2. 速度慢,显存占用大(因为注意力考虑整体信息,所以每一个位置都要和其他位置计算注意力分数)

优化方向

  1. 上下文长度
  2. 加速
  3. 减少显存占用

变体有哪些

  • 稀疏注意力:引入稀疏偏差降低复杂性
  • 线性化注意力:解开Attention矩阵和内核特征图,然后逆序计算,实现线性复杂度(不太了解)
  • 改进多头
  • 内存压缩

现在的主要变体集中在KV

现在的MQ-A、GQ-A、KV-cache本质上都是复用、缓存KV矩阵,用于缓解内存和内存墙(缓存大小不足,需要频繁访存)的,现在较少有人能讲清楚为什么要存储KV而不是QKV或者Q?

  • 要从注意力机制的计算中寻找答案,以下为看图学的KV cache推理示意图:
    - 显然,对于现在大模型中常用的单向注意力来说,Q只使用一次,但KV是随着句子的增长不断增加的,所以减少KV的使用变得十分重要。

Multi-Query Attention

  • Multi-Query从多头注意力改进而来,多头本身是KQV多头,现在是用Q多头,KV单头。也就是说,在所有注意力头上共享KV。
  • 优点:减少KV cache大小,减少显存占用,提高推理速度
  • 使用它的模型:GLM2~,Falcon等

Grouped-query Attention

  • 介于多头和多Q之间,复用N个KV,精度高一些。
  • LLaMA2用的就是这个

FlashAttention

  • 使用分块计算softmax
  • 解决显存和缓存
相关推荐
stbomei1 小时前
当 AI 开始 “理解” 情感:情感计算技术正在改写人机交互规则
人工智能·人机交互
Moshow郑锴6 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20256 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR7 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散138 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8248 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945198 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火9 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴10 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR11 小时前
每周AI论文速递(250811-250815)
人工智能