NLP基础知识2【各种大模型的注意力】

注意力

传统Attention存在的问题

  1. 上下文约束
  2. 速度慢,显存占用大(因为注意力考虑整体信息,所以每一个位置都要和其他位置计算注意力分数)

优化方向

  1. 上下文长度
  2. 加速
  3. 减少显存占用

变体有哪些

  • 稀疏注意力:引入稀疏偏差降低复杂性
  • 线性化注意力:解开Attention矩阵和内核特征图,然后逆序计算,实现线性复杂度(不太了解)
  • 改进多头
  • 内存压缩

现在的主要变体集中在KV

现在的MQ-A、GQ-A、KV-cache本质上都是复用、缓存KV矩阵,用于缓解内存和内存墙(缓存大小不足,需要频繁访存)的,现在较少有人能讲清楚为什么要存储KV而不是QKV或者Q?

  • 要从注意力机制的计算中寻找答案,以下为看图学的KV cache推理示意图:
    - 显然,对于现在大模型中常用的单向注意力来说,Q只使用一次,但KV是随着句子的增长不断增加的,所以减少KV的使用变得十分重要。

Multi-Query Attention

  • Multi-Query从多头注意力改进而来,多头本身是KQV多头,现在是用Q多头,KV单头。也就是说,在所有注意力头上共享KV。
  • 优点:减少KV cache大小,减少显存占用,提高推理速度
  • 使用它的模型:GLM2~,Falcon等

Grouped-query Attention

  • 介于多头和多Q之间,复用N个KV,精度高一些。
  • LLaMA2用的就是这个

FlashAttention

  • 使用分块计算softmax
  • 解决显存和缓存
相关推荐
UI设计兰亭妙微6 分钟前
人工智能大模型管理平台UI设计
人工智能
发哥来了9 分钟前
主流AI视频生成商用方案选型评测:五大核心维度对比分析
大数据·人工智能
物联网APP开发从业者10 分钟前
2026年AI智能产品开发行业十大创新解决方案
人工智能
badfl24 分钟前
VSCode Claude Code插件配置教程:使用、配置中转API、常见问题
人工智能·vscode·ai
Faker66363aaa1 小时前
指纹过滤器缺陷检测与分类 —— 基于MS-RCNN_X101-64x4d_FPN_1x_COCO模型的实现与分析_1
人工智能·目标跟踪·分类
金融小师妹1 小时前
基于LSTM-GARCH-EVT混合模型的贵金属极端波动解析:黄金白银双双反弹的逻辑验证
大数据·人工智能·深度学习·机器学习
代码匠心1 小时前
Trae IDE 隐藏玩法:接入即梦 AI,生成高质量大片!
人工智能·ai·trae·skills
陈天伟教授1 小时前
人工智能应用- 语言理解:01. 写作与对话
人工智能·深度学习·语音识别
铁蛋AI编程实战1 小时前
OpenClaw+Kimi K2.5开源AI助手零门槛部署教程:本地私有化+远程控制+办公自动化全实操
人工智能·开源
liliangcsdn1 小时前
文本视频音频分块工具 - Semantic Chunkers
人工智能·音视频