NLP基础知识2【各种大模型的注意力】

注意力

传统Attention存在的问题

  1. 上下文约束
  2. 速度慢,显存占用大(因为注意力考虑整体信息,所以每一个位置都要和其他位置计算注意力分数)

优化方向

  1. 上下文长度
  2. 加速
  3. 减少显存占用

变体有哪些

  • 稀疏注意力:引入稀疏偏差降低复杂性
  • 线性化注意力:解开Attention矩阵和内核特征图,然后逆序计算,实现线性复杂度(不太了解)
  • 改进多头
  • 内存压缩

现在的主要变体集中在KV

现在的MQ-A、GQ-A、KV-cache本质上都是复用、缓存KV矩阵,用于缓解内存和内存墙(缓存大小不足,需要频繁访存)的,现在较少有人能讲清楚为什么要存储KV而不是QKV或者Q?

  • 要从注意力机制的计算中寻找答案,以下为看图学的KV cache推理示意图:
    - 显然,对于现在大模型中常用的单向注意力来说,Q只使用一次,但KV是随着句子的增长不断增加的,所以减少KV的使用变得十分重要。

Multi-Query Attention

  • Multi-Query从多头注意力改进而来,多头本身是KQV多头,现在是用Q多头,KV单头。也就是说,在所有注意力头上共享KV。
  • 优点:减少KV cache大小,减少显存占用,提高推理速度
  • 使用它的模型:GLM2~,Falcon等

Grouped-query Attention

  • 介于多头和多Q之间,复用N个KV,精度高一些。
  • LLaMA2用的就是这个

FlashAttention

  • 使用分块计算softmax
  • 解决显存和缓存
相关推荐
Rose sait19 小时前
【环境配置】Linux配置虚拟环境pytorch
linux·人工智能·python
福客AI智能客服19 小时前
从被动响应到主动赋能:家具行业客服机器人的革新路径
大数据·人工智能
司南OpenCompass20 小时前
衡量AI真实科研能力!司南科学智能评测上线
人工智能·多模态模型·大模型评测·司南评测
罗宇超MS20 小时前
如何看待企业自建AI知识库?
人工智能·alm
土星云SaturnCloud20 小时前
液冷“内卷”:在局部优化与系统重构之间,寻找第三条路
服务器·人工智能·ai·计算机外设
智界前沿20 小时前
集之互动AI创意视频解决方案:商业级可控,让品牌创意从“灵感”直达“落地”
人工智能·aigc
baby_hua20 小时前
20251024_PyTorch深度学习快速入门教程
人工智能·pytorch·深度学习
brave and determined20 小时前
CANN训练营 学习(day9)昇腾AscendC算子开发实战:从零到性能冠军
人工智能·算法·机器学习·ai·开发环境·算子开发·昇腾ai
SelectDB20 小时前
Apache Doris 4.0.2 版本正式发布
数据库·人工智能