搭建基于 ChatGPT 的问答系统第一章-综述

ChatGPT 的出现,使真正的智能问答成为可能。强大的指令理解能力、自然语言生成能力是 LLM 的核心,支持了 LLM 以类人的方式去思考、执行并完成用户任务。

基于 ChatGPT API,我们可以快速、便捷地搭建真正的智能问答系统,将"人工智障"真正升格为"人工智能"。

对于开发者来说,如何能够基于 ChatGPT 搭建一个完整、全面的问答系统,是极具实战价值与实践意义的。

要搭建基于 ChatGPT 的完整问答系统,除去上一部分所讲述的如何构建 Prompt Engineering 外,还需要完成多个额外的步骤。

例如,处理用户输入提升系统处理能力,使用思维链、提示链来提升问答效果,检查输入保证系统反馈稳定,对系统效果进行评估以实现进一步优化等。
当 ChatGPT API 提供了足够的智能性,系统的重要性就更充分地展现在保证全面、稳定的效果之上。

第二部分 搭建基于 ChatGPT 的问答系统,基于吴恩达老师发布的《Building Systems with the ChatGPT API》课程。

这部分在《 面向开发者的提示词工程》的基础上,指导开发者如何基于 ChatGPT 提供的 API 开发一个完整的、全面的智能问答系统。

通过代码实践,实现了基于 ChatGPT 开发问答系统的全流程,介绍了基于大模型开发的新范式,值得每一个有志于使用大模型开发应用程序的开发者学习。

如果说,《 面向开发者的提示词工程》是开发者入门大模型开发的理论基础,那么从这一部分就是最有力的实践基础

学习这一部分,应当充分演练所提供的代码,做到自我复现并能够结合个人兴趣、特长对所提供的代码进行增添、更改,实现一个更个性化、定制化的问答系统。

本部分的主要内容包括:通过分类与监督的方式检查输入;思维链推理以及提示链的技巧;检查输入;对系统输出进行评估等。

目录:

  1. 简介 Introduction @Sarai
  2. 模型,范式和 token Language Models, the Chat Format and Tokens @仲泰
  3. 检查输入-分类 Classification @诸世纪
  4. 检查输入-监督 Moderation @诸世纪
  5. 思维链推理 Chain of Thought Reasoning @万礼行
  6. 提示链 Chaining Prompts @万礼行
  7. 检查输出 Check Outputs @仲泰
  8. 评估(端到端系统)Evaluation @邹雨衡
  9. 评估(简单问答)Evaluation-part1 @陈志宏
  10. 评估(复杂问答)Evaluation-part2 @邹雨衡
  11. 总结 Conclusion @Sarai
相关推荐
Moshow郑锴1 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20252 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR3 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散133 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8243 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945193 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火5 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴5 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR6 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢6 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网