CLIP-DIY 论文解读:基于 CLIP 和无监督目标定位的语义分割

CLIP-DIY 是一种基于 CLIP 模型的开放词汇语义分割方法,特点是无需额外的训练或者像素级标注,即可实现高效、准确的分割效果。该方法主要利用 CLIP 模型在图像分类方面的强大能力,并结合无监督目标定位技术,实现开放词汇语义分割。

在论文中,首先肯定了CLIP出现的重要意义,开启了开放世界图像感知的大门。缺点是难以用在图像分割这样的密集任务。虽然已经有完全监督学习的方法,可以用来解决图像分割问题。但是冗长的像素级标注,要付出高昂的成本。

为此论文作者提出了一种新的零采样开放词汇语义分割方法,它直接利用了CLIP的高性能图像分类特性,不需要改变结构或额外的训练。

论文的核心核心思想

  1. 多尺度推理: 将图像分割成不同大小的Patch,利用 CLIP 模型对每个Patch进行分类,得到每个 patch 对应每个类别的置信度分数。

  2. 聚合预测: 将不同尺度的预测结果进行聚合,得到每个像素对应每个类别的置信度分数图。

  3. 前景/背景引导: 利用无监督目标定位方法获取前景/背景分数,对预测结果进行引导,提升分割精度。

图像分割过程

首先是特征向量的提取,CLIP-DIY并没有训练新的模型,而是利用已经预训练好的CLIP模型,先使用 CLIP 文本编码器将文本提示(如"一张狗的照片")编码成向量。将图像分割成不同大小的Patch之后,使用 CLIP 图像编码器提取每个Patch 的特征向量。

然后就可以计算每个Patch与文本向量之间的相似度,并进行上采样,得到每个像素对应每个类别的置信度分数图。再使用无监督的前景/背景分割方法(如 FOUND)获取前景/背景分数,根据前景/背景分数对预测结果进行引导,就可以提升分割的精度。

最终生成分割图的时候,是通过 SoftMax 操作,将相似度得分转换为概率分布,其中每个像素都被分配了一个类别标签。

论文中使用的FOUND是一个轻量级的卷积神经网络,通过自训练学习前景/背景分割。能够有效地识别图像中的前景区域,并生成前景/背景得分图。除了FOUND之外,还可以采用其他基于无监督或者自监督学习的目标分割方法,例如CutLER和Freesolo。

结论和思考

使用CLIP-DIY不需要任何特定的额外训练就可以使用。作为开放世界分割的现成方法,可以用来辅助作为数据标注的工具,减少数据标注的成本和人力投入。

减少标注成本在大模型训练中是非常有价值的,尤其针对特定领域的模型训练,往往需要处理大量的视频和图片,如果全部由人来进行剪辑和标注,不但成本高、效率低、还容易出错;用自动化工具辅助,可以极大改善。

对我自己来说,最有启发性地方在于,在解决问题的时候,可以设计出一种算法,完全不需要任何特定的训练,将算法的核心,放在输入层和输出层,如何处理和分割数据,然后组合不同的模型和函数,就可以带来质的变化。

CLIP-DIY 论文解读:基于 CLIP 和无监督目标定位的语义分割https://mp.weixin.qq.com/s/E6naltzclXNT2jJyzuLZaA

相关推荐
水如烟4 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学4 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19824 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮5 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手5 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋5 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-5 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView5 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能
Imm7775 小时前
中国知名的车膜品牌推荐几家
人工智能·python
风静如云5 小时前
Claude Code:进入dash模式
人工智能