快速安装torch-gpu和Tensorflow-gpu(自用,Ubuntu)

要更详细的教程可以参考Tensorflow + PyTorch 安装(CPU + GPU 版本),这里是有基础之后的快速安装。

一、Pytorch

  • 安装
bash 复制代码
conda create -n torch_env python=3.10.13
conda activate torch_env
conda install cudatoolkit==11.8 -c nvidia
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
conda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc
  • 测试
python 复制代码
# 进入python
python
import torch
print(torch.cuda.is_available())

二、Tensorflow

  • 安装

安装完Pytorch,再安装Tensorflow

bash 复制代码
conda create -n tensorflow_env python=3.7
conda activate tensorflow_env
conda install cudatoolkit==11.8 -c nvidia
pip install tensorflow-gpu==2.6.0

# 测试时会报错说LD_LIBRARY_PATH: :/usr/local/cuda/lib64下没有libcudnn.so.8
# 于是用locate在电脑中查找
# 显示其中一个路径是 your_path/Anaconda3/envs/torch_env/lib/python3.10/site-packages/torch/lib/libcudnn.so.8,复制到/usr/local/cuda/lib64
sudo updatedb
locate libcudnn.so.8   
sudo cp your_path/Anaconda3/envs/torch_env/lib/python3.10/site-packages/torch/lib/libcudnn.so.8 /usr/local/cuda/lib64
  • 测试
python 复制代码
import tensorflow as tf
print(tf.test.is_gpu_available())

三、查看显卡利用率

bash 复制代码
# 简单查看
nvidia-smi
# 每2秒刷新
nvidia-smi -l 1
相关推荐
golang学习记3 分钟前
ZCF:一键配齐 Claude Code 开发环境的零配置利器
人工智能
禅与计算机程序设计艺术5 分钟前
实现一个原生版本的 LangGraph 的 `create_agent` 功能,使用 Python 和通用的 LLM MaaS API
人工智能
Candice_jy6 分钟前
vscode运行ipynb文件:使用docker中的虚拟环境
服务器·ide·vscode·python·docker·容器·编辑器
恒点虚拟仿真13 分钟前
智能制造专业虚拟仿真实训平台:AI赋能个性化学习,提高实践技能
人工智能·智能制造·ai教学·ai+虚拟仿真·虚拟仿真实训平台·虚拟仿真平台·虚拟仿真教学平台
泰迪智能科技18 分钟前
分享|智能决策,精准增长:企业数据挖掘关键策略与应用全景
人工智能·数据挖掘
番茄撒旦在上18 分钟前
2.每日机器学习——张量(Tensors)
人工智能·机器学习
流烟默21 分钟前
机器学习中的 fit()、transform() 与 fit_transform():原理、用法与最佳实践
人工智能·机器学习·transform·fit
王中阳Go22 分钟前
8 - AI 服务化 - AI 超级智能体项目教程
人工智能
长桥夜波22 分钟前
【第二十周】机器学习笔记09
人工智能·笔记·机器学习
流烟默30 分钟前
基于Optuna 贝叶斯优化的自动化XGBoost 超参数调优器
人工智能·python·机器学习·超参数优化