快速安装torch-gpu和Tensorflow-gpu(自用,Ubuntu)

要更详细的教程可以参考Tensorflow + PyTorch 安装(CPU + GPU 版本),这里是有基础之后的快速安装。

一、Pytorch

  • 安装
bash 复制代码
conda create -n torch_env python=3.10.13
conda activate torch_env
conda install cudatoolkit==11.8 -c nvidia
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
conda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc
  • 测试
python 复制代码
# 进入python
python
import torch
print(torch.cuda.is_available())

二、Tensorflow

  • 安装

安装完Pytorch,再安装Tensorflow

bash 复制代码
conda create -n tensorflow_env python=3.7
conda activate tensorflow_env
conda install cudatoolkit==11.8 -c nvidia
pip install tensorflow-gpu==2.6.0

# 测试时会报错说LD_LIBRARY_PATH: :/usr/local/cuda/lib64下没有libcudnn.so.8
# 于是用locate在电脑中查找
# 显示其中一个路径是 your_path/Anaconda3/envs/torch_env/lib/python3.10/site-packages/torch/lib/libcudnn.so.8,复制到/usr/local/cuda/lib64
sudo updatedb
locate libcudnn.so.8   
sudo cp your_path/Anaconda3/envs/torch_env/lib/python3.10/site-packages/torch/lib/libcudnn.so.8 /usr/local/cuda/lib64
  • 测试
python 复制代码
import tensorflow as tf
print(tf.test.is_gpu_available())

三、查看显卡利用率

bash 复制代码
# 简单查看
nvidia-smi
# 每2秒刷新
nvidia-smi -l 1
相关推荐
L.fountain4 分钟前
图像自回归生成(Auto-regressive image generation)实战学习(一)
人工智能·深度学习·学习·计算机视觉·图像自回归
摘星编程15 分钟前
Ascend C编程语言详解:打造高效AI算子的利器
c语言·开发语言·人工智能
DisonTangor26 分钟前
【小米拥抱开源】小米MiMo团队开源309B专家混合模型——MiMo-V2-Flash
人工智能·开源·aigc
hxxjxw40 分钟前
Pytorch分布式训练/多卡训练(六) —— Expert Parallelism (MoE的特殊策略)
人工智能·pytorch·python
Robot侠1 小时前
视觉语言导航从入门到精通(一)
网络·人工智能·microsoft·llm·vln
掘金一周1 小时前
【用户行为监控】别只做工具人了!手把手带你写一个前端埋点统计 SDK | 掘金一周 12.18
前端·人工智能·后端
神州问学1 小时前
世界模型:AI的下一个里程碑
人工智能
zhaodiandiandian1 小时前
AI深耕产业腹地 新质生产力的实践路径与价值彰显
人工智能
古德new1 小时前
openFuyao AI大数据场景加速技术实践指南
大数据·人工智能