机器学习(二十三):决策树和决策树学习过程

一、决策树

下面是数据集,输入特征是耳朵形状、脸形状、是否有胡子,输出结果是是否为猫

下图是决策树,根据耳朵形状、脸形状、是否有胡子这几个特征,建立决策树,从根节点一步步预测结果。

上图中,每一个椭圆形和矩形是树的节点。最顶上的节点是树的根节点。除了最底下一层的节点外,其余节点(椭圆形)为决策节点。最底下一层的节点为叶节点。

  • 决策节点:看到一个特定的特征,然后根据特征的值决定是向左还是向右下树
  • 叶节点:做出预测

也可以建立不同类型的决策树:

二、决策树学习过程

第一步:决定根节点使用什么特征

第二步:决定下一节点等节点使用什么特征

2.1 选择什么特征来分裂节点?

根据最大化纯度原则选择特征

例子:以预测输入是否为猫为例,需要挑选什么样的特征,使得按特征分类的子集里尽可能都是猫或者都不是猫。

如果以猫的DNA为特征,分裂节点,那么分裂出来的两个子集分别全为猫,全不为猫。这样的特征就满足最大化纯度。

如果以耳朵形状分,尖耳朵子集里大多数是猫,下垂耳朵子集里大多数不是猫。选取这样的特征也是不错的。

2.2 什么时候停止分裂?

1、当一个节点上全部是一个种类时,停止分裂。

2、当继续分裂,会超过树的最大深度时,停止分裂,这样可以确保树不会太大,使它不会过拟合。树的深度定义如下:

3、当纯度提高率低于阈值时,停止分裂。如果此时继续增加节点,取得的收益很小,有可能导致过拟合。

4、当子集的数据量低于阈值时,停止分裂。

学习来源:吴恩达机器学习,15.1-15.2节

相关推荐
木头左3 分钟前
遗忘门参数对LSTM长期记忆保留的影响分析
人工智能·rnn·lstm
serve the people9 分钟前
tensorflow 零基础吃透:RaggedTensor 的索引与切片(规则 + 示例 + 限制)
人工智能·tensorflow·neo4j
玄微云10 分钟前
选 AI 智能体开发公司?合肥玄微子科技有限公司的思路可参考
大数据·人工智能·科技·软件需求·门店管理
幂律智能10 分钟前
幂律智能CTO张惟师受邀参加山南投融汇:AI正从「工具」进化为「虚拟专家」
大数据·人工智能
javastart14 分钟前
教育行业AI落地应用:DeepSeek+智能体搭建作文批改助手
人工智能·aigc
爱笑的眼睛1115 分钟前
FastAPI 路由系统深度探索:超越基础 CRUD 的高级模式与架构实践
java·人工智能·python·ai
The Straggling Crow18 分钟前
RAGFlow 2
人工智能
工藤学编程20 分钟前
零基础学AI大模型之RunnablePassthrough
人工智能
dog25029 分钟前
世界的本质是概率,没有因果
人工智能·概率
Coding茶水间34 分钟前
基于深度学习的木薯病害检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉