机器学习(二十三):决策树和决策树学习过程

一、决策树

下面是数据集,输入特征是耳朵形状、脸形状、是否有胡子,输出结果是是否为猫

下图是决策树,根据耳朵形状、脸形状、是否有胡子这几个特征,建立决策树,从根节点一步步预测结果。

上图中,每一个椭圆形和矩形是树的节点。最顶上的节点是树的根节点。除了最底下一层的节点外,其余节点(椭圆形)为决策节点。最底下一层的节点为叶节点。

  • 决策节点:看到一个特定的特征,然后根据特征的值决定是向左还是向右下树
  • 叶节点:做出预测

也可以建立不同类型的决策树:

二、决策树学习过程

第一步:决定根节点使用什么特征

第二步:决定下一节点等节点使用什么特征

2.1 选择什么特征来分裂节点?

根据最大化纯度原则选择特征

例子:以预测输入是否为猫为例,需要挑选什么样的特征,使得按特征分类的子集里尽可能都是猫或者都不是猫。

如果以猫的DNA为特征,分裂节点,那么分裂出来的两个子集分别全为猫,全不为猫。这样的特征就满足最大化纯度。

如果以耳朵形状分,尖耳朵子集里大多数是猫,下垂耳朵子集里大多数不是猫。选取这样的特征也是不错的。

2.2 什么时候停止分裂?

1、当一个节点上全部是一个种类时,停止分裂。

2、当继续分裂,会超过树的最大深度时,停止分裂,这样可以确保树不会太大,使它不会过拟合。树的深度定义如下:

3、当纯度提高率低于阈值时,停止分裂。如果此时继续增加节点,取得的收益很小,有可能导致过拟合。

4、当子集的数据量低于阈值时,停止分裂。

学习来源:吴恩达机器学习,15.1-15.2节

相关推荐
光影少年6 小时前
前端ai开发需要学习哪些东西?
前端·人工智能·学习
灵途科技6 小时前
灵途科技当选中国电子商会智能传感器专委会副理事长单位
大数据·人工智能·科技
非著名架构师6 小时前
“低空经济”的隐形护航者:AI驱动的秒级风场探测如何保障无人机物流与城市空管安全?
人工智能·数据分析·疾风气象大模型·高精度天气预报数据·galeweather.cn·高精度气象
洁洁!6 小时前
openEuler在WSL2中的GPU加速AI训练实战指南
人工智能·数据挖掘·数据分析
桂花饼6 小时前
字节Seedream-4.5架构揭秘:当AI开始拥有“版式推理”能力,CISAN与DLE引擎如何重构多图生成?
人工智能·aigc·idea·sora2 api·gemini 3 pro·claude opus 4.5·doubao-seedream
whaosoft-1436 小时前
51c视觉~合集55
人工智能
AI营销快线6 小时前
2025年AI营销内容生产革命:成本减半,效率倍增的关键
人工智能
正在走向自律6 小时前
AiOnly平台x FastGPT:一键调用Gemini 3 Pro系列模型从零构建AI工作流
大数据·数据库·人工智能·aionly·nano banana pro·gemini 3 pro
沃斯堡&蓝鸟7 小时前
DAY22 推断聚类后簇的类型
人工智能·机器学习·聚类
老蒋新思维7 小时前
创客匠人 2025 万人峰会实录:AI 智能体重构创始人 IP 变现逻辑 —— 从 0 到年入千万的实战路径
大数据·网络·人工智能·tcp/ip·创始人ip·创客匠人·知识变现