机器学习(二十三):决策树和决策树学习过程

一、决策树

下面是数据集,输入特征是耳朵形状、脸形状、是否有胡子,输出结果是是否为猫

下图是决策树,根据耳朵形状、脸形状、是否有胡子这几个特征,建立决策树,从根节点一步步预测结果。

上图中,每一个椭圆形和矩形是树的节点。最顶上的节点是树的根节点。除了最底下一层的节点外,其余节点(椭圆形)为决策节点。最底下一层的节点为叶节点。

  • 决策节点:看到一个特定的特征,然后根据特征的值决定是向左还是向右下树
  • 叶节点:做出预测

也可以建立不同类型的决策树:

二、决策树学习过程

第一步:决定根节点使用什么特征

第二步:决定下一节点等节点使用什么特征

2.1 选择什么特征来分裂节点?

根据最大化纯度原则选择特征

例子:以预测输入是否为猫为例,需要挑选什么样的特征,使得按特征分类的子集里尽可能都是猫或者都不是猫。

如果以猫的DNA为特征,分裂节点,那么分裂出来的两个子集分别全为猫,全不为猫。这样的特征就满足最大化纯度。

如果以耳朵形状分,尖耳朵子集里大多数是猫,下垂耳朵子集里大多数不是猫。选取这样的特征也是不错的。

2.2 什么时候停止分裂?

1、当一个节点上全部是一个种类时,停止分裂。

2、当继续分裂,会超过树的最大深度时,停止分裂,这样可以确保树不会太大,使它不会过拟合。树的深度定义如下:

3、当纯度提高率低于阈值时,停止分裂。如果此时继续增加节点,取得的收益很小,有可能导致过拟合。

4、当子集的数据量低于阈值时,停止分裂。

学习来源:吴恩达机器学习,15.1-15.2节

相关推荐
编码小哥6 小时前
OpenCV光流估计:运动检测与跟踪
人工智能·计算机视觉·目标跟踪
QBoson6 小时前
水处理AI突破小样本困境:VAE数据增强让污染物降解预测精度达88%
人工智能
浅川.256 小时前
机器学习基础知识
人工智能·机器学习
永远都不秃头的程序员(互关)6 小时前
深度解密自注意力机制:AI模型“聚焦”能力的核心奥秘与实践
人工智能
zhengfei6116 小时前
与人工智能安全相关的优质资源
人工智能·安全
TGITCIC6 小时前
LangGraph:让AI学会“回头是岸”的智能体架构
人工智能·rag·ai agent·图搜索·ai智能体·langgraph·graphrag
2501_941329726 小时前
家庭日常物品目标检测与识别系统实现_MaskRCNN改进模型应用
人工智能·目标检测·计算机视觉
打小就很皮...6 小时前
Claude + Skills 快速生成PPT
人工智能·claude·skills
过期的秋刀鱼!7 小时前
机器学习-正则化线性回归
人工智能·深度学习·机器学习·大模型·线性回归·过拟合和欠拟合·大模型调参
_codemonster7 小时前
计算机视觉入门到实战系列(十七)基于视觉词袋模型的图像分类算法--视觉词典构建
机器学习·计算机视觉·分类