机器学习(二十三):决策树和决策树学习过程

一、决策树

下面是数据集,输入特征是耳朵形状、脸形状、是否有胡子,输出结果是是否为猫

下图是决策树,根据耳朵形状、脸形状、是否有胡子这几个特征,建立决策树,从根节点一步步预测结果。

上图中,每一个椭圆形和矩形是树的节点。最顶上的节点是树的根节点。除了最底下一层的节点外,其余节点(椭圆形)为决策节点。最底下一层的节点为叶节点。

  • 决策节点:看到一个特定的特征,然后根据特征的值决定是向左还是向右下树
  • 叶节点:做出预测

也可以建立不同类型的决策树:

二、决策树学习过程

第一步:决定根节点使用什么特征

第二步:决定下一节点等节点使用什么特征

2.1 选择什么特征来分裂节点?

根据最大化纯度原则选择特征

例子:以预测输入是否为猫为例,需要挑选什么样的特征,使得按特征分类的子集里尽可能都是猫或者都不是猫。

如果以猫的DNA为特征,分裂节点,那么分裂出来的两个子集分别全为猫,全不为猫。这样的特征就满足最大化纯度。

如果以耳朵形状分,尖耳朵子集里大多数是猫,下垂耳朵子集里大多数不是猫。选取这样的特征也是不错的。

2.2 什么时候停止分裂?

1、当一个节点上全部是一个种类时,停止分裂。

2、当继续分裂,会超过树的最大深度时,停止分裂,这样可以确保树不会太大,使它不会过拟合。树的深度定义如下:

3、当纯度提高率低于阈值时,停止分裂。如果此时继续增加节点,取得的收益很小,有可能导致过拟合。

4、当子集的数据量低于阈值时,停止分裂。

学习来源:吴恩达机器学习,15.1-15.2节

相关推荐
心动啊1212 小时前
机器学习概念2
人工智能·机器学习
港港胡说2 小时前
机器学习(西瓜书)学习——绪论
人工智能·学习·机器学习
LeeZhao@3 小时前
【AGI】GPT-5:博士级AI助手的全面进化与协作智能时代的黎明
人工智能·gpt·agi
深圳UMI3 小时前
AI模型设计基础入门
大数据·人工智能
白雪讲堂3 小时前
【GEO从入门到精通】生成式引擎与其他 AI 技术的关系
大数据·人工智能·数据分析·智能电视·geo
魔力之心4 小时前
actuary notes[1]
人工智能·概率
Fine姐4 小时前
数据挖掘2.3-2.5:梯度,梯度下降以及凸性
人工智能·数据挖掘
瓦香钵钵鸡5 小时前
机器学习通关秘籍|Day 03:决策树、随机森林与线性回归
决策树·随机森林·机器学习·线性回归·最小二乘法·损失函数·信息熵
2501_924730615 小时前
智慧城管复杂人流场景下识别准确率↑32%:陌讯多模态感知引擎实战解析
大数据·人工智能·算法·计算机视觉·目标跟踪·视觉检测·边缘计算