机器学习(二十三):决策树和决策树学习过程

一、决策树

下面是数据集,输入特征是耳朵形状、脸形状、是否有胡子,输出结果是是否为猫

下图是决策树,根据耳朵形状、脸形状、是否有胡子这几个特征,建立决策树,从根节点一步步预测结果。

上图中,每一个椭圆形和矩形是树的节点。最顶上的节点是树的根节点。除了最底下一层的节点外,其余节点(椭圆形)为决策节点。最底下一层的节点为叶节点。

  • 决策节点:看到一个特定的特征,然后根据特征的值决定是向左还是向右下树
  • 叶节点:做出预测

也可以建立不同类型的决策树:

二、决策树学习过程

第一步:决定根节点使用什么特征

第二步:决定下一节点等节点使用什么特征

2.1 选择什么特征来分裂节点?

根据最大化纯度原则选择特征

例子:以预测输入是否为猫为例,需要挑选什么样的特征,使得按特征分类的子集里尽可能都是猫或者都不是猫。

如果以猫的DNA为特征,分裂节点,那么分裂出来的两个子集分别全为猫,全不为猫。这样的特征就满足最大化纯度。

如果以耳朵形状分,尖耳朵子集里大多数是猫,下垂耳朵子集里大多数不是猫。选取这样的特征也是不错的。

2.2 什么时候停止分裂?

1、当一个节点上全部是一个种类时,停止分裂。

2、当继续分裂,会超过树的最大深度时,停止分裂,这样可以确保树不会太大,使它不会过拟合。树的深度定义如下:

3、当纯度提高率低于阈值时,停止分裂。如果此时继续增加节点,取得的收益很小,有可能导致过拟合。

4、当子集的数据量低于阈值时,停止分裂。

学习来源:吴恩达机器学习,15.1-15.2节

相关推荐
xixixi777774 分钟前
算力-模型-数据三位一体:AI时代的“不可能三角”与“飞轮引擎”
人工智能·ai·大模型·算力·模型·数据·数据驱动
梦想画家6 分钟前
企业AI审计实战:系统级对接的高效自动化落地方案
人工智能·自动化
说私域7 分钟前
数字化运营视角下用户留存体系构建与实践研究——以AI智能客服商城小程序为载体
人工智能·小程序·产品运营·流量运营·私域运营
贡献者手册8 分钟前
当 AI 写代码的速度超过了你提交的速度:为何你需要一款“流式” Git 管理器?
人工智能·git
Rorsion10 分钟前
PyTorch实现卷积神经网络(CNN)
人工智能·神经网络·cnn
向哆哆12 分钟前
高压电线电力巡检六类目标的图像识别数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
张居邪31 分钟前
# RAG + LangGraph 实战:4 个工程踩坑,让 AI 从"能用"到"能上线"
人工智能·开源
qyresearch_1 小时前
移动感应健身:全球市场扩张下的中国机遇与破局之道
大数据·人工智能·区块链
啊阿狸不会拉杆1 小时前
《机器学习导论》第 16 章-贝叶斯估计
人工智能·python·算法·机器学习·ai·参数估计·贝叶斯估计
范桂飓1 小时前
Claude Code 高级特性和应用实践
人工智能