机器学习(二十三):决策树和决策树学习过程

一、决策树

下面是数据集,输入特征是耳朵形状、脸形状、是否有胡子,输出结果是是否为猫

下图是决策树,根据耳朵形状、脸形状、是否有胡子这几个特征,建立决策树,从根节点一步步预测结果。

上图中,每一个椭圆形和矩形是树的节点。最顶上的节点是树的根节点。除了最底下一层的节点外,其余节点(椭圆形)为决策节点。最底下一层的节点为叶节点。

  • 决策节点:看到一个特定的特征,然后根据特征的值决定是向左还是向右下树
  • 叶节点:做出预测

也可以建立不同类型的决策树:

二、决策树学习过程

第一步:决定根节点使用什么特征

第二步:决定下一节点等节点使用什么特征

2.1 选择什么特征来分裂节点?

根据最大化纯度原则选择特征

例子:以预测输入是否为猫为例,需要挑选什么样的特征,使得按特征分类的子集里尽可能都是猫或者都不是猫。

如果以猫的DNA为特征,分裂节点,那么分裂出来的两个子集分别全为猫,全不为猫。这样的特征就满足最大化纯度。

如果以耳朵形状分,尖耳朵子集里大多数是猫,下垂耳朵子集里大多数不是猫。选取这样的特征也是不错的。

2.2 什么时候停止分裂?

1、当一个节点上全部是一个种类时,停止分裂。

2、当继续分裂,会超过树的最大深度时,停止分裂,这样可以确保树不会太大,使它不会过拟合。树的深度定义如下:

3、当纯度提高率低于阈值时,停止分裂。如果此时继续增加节点,取得的收益很小,有可能导致过拟合。

4、当子集的数据量低于阈值时,停止分裂。

学习来源:吴恩达机器学习,15.1-15.2节

相关推荐
倔强青铜三12 分钟前
苦练Python第23天:元组秘籍与妙用
人工智能·python·面试
Teacher.chenchong41 分钟前
现代R语言机器学习:Tidymodel/Tidyverse语法+回归/树模型/集成学习/SVM/深度学习/降维/聚类分类与科研绘图可视化
机器学习·回归·r语言
AndrewHZ43 分钟前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI43 分钟前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
大咖分享课1 小时前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
lucky_lyovo1 小时前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn1 小时前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy1 小时前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
星座5281 小时前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法与案例分析
机器学习·r语言·tidyverse·tidymodel
静心问道1 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态