【代码】Python3|Scrapy框架初探(汽车之家大连市二手车车辆数据爬取、清洗与可视化)

本篇主要是整个项目的介绍,没提到太多琐碎的技术细节,以后有空的话会整理一下 Scrapy 和原生爬虫的差异,还有它坑人的一些地方,单发出来。

开源地址:https://github.com/shandianchengzi/car_home_spider

使用说明:切换到autohome_spider目录下,运行run.bat

文章目录

汽车之家大连市二手车车辆数据爬取、清洗与可视化

一、项目简介

本项目旨在通过网络爬虫技术,从"汽车之家"网站的二手车频道自动抓取各类汽车的详细信息,包括品牌、车型、价格、公里数、上牌时间等,然后利用Pandas库对数据进行清洗和可视化分析,为用户提供直观的数据展示和分析结果。通过本项目,用户可以了解到大连市二手车市场的价格分布、常购品牌等信息,为购车提供参考依据。

二、项目架构

1)运行环境

  1. 硬件系统:Intel Core i7, 16GB RAM, NVIDIA GeForce GTX 1050 Ti
  2. 操作系统:Windows 10, Version 20H2
  3. 软件版本:Python 3.8.5, SQLite 3.31.1, Visual Studio Code 1.57.1
  4. 运行时刻:2024年7月13日 23:00

3)系统架构图

4)数据库设计

数据存入csv文件,包含字段:品牌、上市年份、车型、表显里程(公里)、上牌时间(年)、价格(万)、原厂保修时间、所属城市、链接。

三、项目核心代码说明

1)Scrapy框架数据爬取

爬取之前,先分析网站信息。

  1. 确定网页:在网上汽车之家能找到两个网页是卖二手车的,一个在产品库^1^里、另一个在二手车严选^2^上。结果显示,2024年7月13日,产品库中的车源更多,有2714条;而二手车严选里只有1934条。因此,本项目选择产品库中的结果。

  2. 确定请求方式:打开开发者工具并刷新,然后搜索页面上的任意车辆的名称,检查返回的结果对应的请求。结果表明,请求方式为Get,请求的就是网站的链接,同时,没有传递任何Get参数。

  3. 确定传参模式:

    1. 筛选机制:注意到网页本身拥有排序功能,这样之后就不需要额外排序。它的排序选项不在参数中,在链接中,比较小众。比如a0_0msdgscncgpi1ltocsp2ex/

      对应默认排序,a0_0msdgscncgpi1lto2cspex/

      对应价格降序。

    2. 翻页机制:产品库的二手车页面中,页码也在链接中。比如a0_0msdgscncgpi1lto2csp1ex/对应第一页,a0_0msdgscncgpi1lto2csp2ex/对应第二页。

  4. 确定结果格式:由于他返回的就是网页,没有json之类的额外信息,所以爬取的结果就是网页上能看到的结果。分析页面内容,可知包含的信息为"品牌"、"上市年份"、"车型"、"实物图"、"表显里程"、"上牌时间"、"价格"、"原厂保修时间"、"所属城市"和详细信息的访问链接。观察到图片采用了懒加载技术,需要额外请求别的链接才能返回,加之数据分析时并不需要图片,因此干脆去掉实物图这一个信息。

  5. 额外注意事项:特别坑的一点是,页数超过100页时会自动重定向回到100页,而不是返回空,这样代码中加空判断就无法真正停止下来。这里得额外写一个100页的判断。而且也因为这个,最多返回结果数量2400条。考虑到总共也只有2714条,可以认为该数量是可以接受的,因此不更改筛选条件重新跑了。

分析好了这些内容之后,再开始用Scrapy写爬虫,代码如下:

  1. Spider中数据爬取解析:
python 复制代码
class AutohomeSpider(scrapy.Spider):
    name = 'autohome_spider'
    allowed_domains = ['autohome.com.cn']
    base_url = 'https://car.autohome.com.cn/2sc/dalian/a0_0msdgscncgpi1lto2csp{}ex/'
    page = 1
    start_urls = ['https://car.autohome.com.cn/2sc/dalian/a0_0msdgscncgpi1lto2csp1ex/']

    def parse(self, response):
        xml = lxml.etree.HTML(response.text)
        piclist = xml.xpath('//div[@class="piclist"]/ul/li')
        if len(piclist) == 0 or self.page > 100: # max page 100
            return
        for car in piclist:
            try:
                l = ItemLoader(item=AutohomeItem())
                title = car.xpath('div[@class="title"]/a/text()')[0]
                title_href = car.xpath('div[@class="title"]/a/@href')[0]
                somethings = title.split(' ', 2)
                if len(somethings) != 3:
                    with open('error.log', 'a') as f:
                        f.write(title + '\n')
                    continue
                # 获得icon_list里所有a标签的title属性并拼接非空的为字符串
                icon_list = car.xpath('div[@class="icon-list"]/a')
                city = car.xpath('div[@class="icon-list"]/span/span/text()')[0]
                icons_info = []
                for icon in icon_list:
                    icon_info = icon.xpath('@title')
                    if icon_info:
                        icons_info.extend(icon_info)
                icons_info = ', '.join(icons_info)
                # 用ItemLoader加载数据
                l.add_value('brand', somethings[0])
                l.add_value('year', somethings[1])
                l.add_value('model', somethings[2])
                l.add_value('mileage', getNumberAndFloat(car.xpath('*/div[@class="detail-l"]/p[1]/text()')[0]))
                l.add_value('registration_time', getNumberAndFloat(car.xpath('*/div[@class="detail-l"]/p[2]/text()')[0]))
                l.add_value('price', car.xpath('*/div[@class="detail-r"]/span/text()'))
                l.add_value('warranty_time', icons_info)
                l.add_value('city', city)
                l.add_value('link', "https:" + title_href)
                yield l.load_item()
            except Exception as e:
                # skip no full information car
                pass

        # 下一页
        self.page += 1
        new_url = self.base_url.format(self.page)
        yield scrapy.Request(new_url, callback=self.parse)
  1. Pipeline中做数据存储:
python 复制代码
class AutohomeSpiderPipeline:
    def open_spider(self, spider):
        self.file = open('autohome.csv', 'w', newline='', encoding='utf-8')
        self.writer = csv.DictWriter(self.file, fieldnames=['brand', 'year', 'model', 'mileage', 'registration_time', 'price', 'warranty_time', 'city', 'link'])
        # ['品牌', '上市年份', '车型', '表显里程(公里)', '上牌时间(年)', '价格(万)', '原厂保修时间', '所属城市', '链接']
        self.writer.writeheader()

    def close_spider(self, spider):
        self.file.close()

    def process_item(self, item, spider):
        # let item: {field: [value]} to {field: value}
        item = {k: v[0] for k, v in item.items()}
        self.writer.writerow(item)
        return item

2)Pandas数据清洗与可视化

数据清洗主要是将错误的数据修改正确或者删除,以便进一步分析。我在爬虫代码的解析过程中,对品牌的解析有误,有一些品牌的名称,本身就带空格,我用空格做分割,导致该列被解析到下一列中。代码如下:

python 复制代码
# 数据清洗
df.drop_duplicates(inplace=True) # 去重
df.dropna(subset=['brand'], inplace=True) # 去掉品牌为空的数据
# 合并前三列的数据形成字符串,用正则重新解析,查找"xxxx款",该字符串前面的是brand,后面的是model,中间的是year
df['brand_model_year'] = df['brand'] + df['year'] + df['model'] # 辅助列
df['brand'] = df['brand_model_year'].str.extract(r'^(.*?)(\d{4}款)(.*)')[0]
df['year'] = df['brand_model_year'].str.extract(r'^(.*?)(\d{4}款)(.*)')[1]
df['model'] = df['brand_model_year'].str.extract(r'^(.*?)(\d{4}款)(.*)')[2]
df.drop(columns=['brand_model_year'], inplace=True)
df['year'] = df['year'].replace('款', '', regex=True)
# 如果原厂保修时间为空,填充为0
df['warranty_time'].fillna('0', inplace=True)
df.to_csv(result_path, index=False, encoding='gbk') # for windows excel

3)Matplotlib数据可视化

多角度可视化代码如下:

python 复制代码
# 数据可视化
df.columns = ['品牌', '上市年份', '车型', '表显里程(公里)', '上牌时间(年)', '价格(万)', '原厂保修时间', '所属城市', '链接']
# 设置字体
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 1. 各种数据的占比统计,全画在一张图上
plt.figure(figsize=(20, 10))
# 1.1 价格分布(只做0~200万的)
plt.subplot(2, 2, 1)
sns.histplot(df['price'], bins=20, kde=True)
plt.xlim(0, 200)
plt.title('价格分布')
# 1.2 里程分布
plt.subplot(2, 2, 2)
sns.histplot(df['mileage'], bins=20, kde=True)
plt.title('里程分布')
# 1.3 品牌分布(前20,扇形图,不要x和y的label)
plt.subplot(2, 2, 3)
df['brand'].value_counts().head(20).plot.pie(autopct='%1.1f%%')
plt.ylabel('')
plt.title('品牌数量分布(前20)')
# 1.4 车型分布(前10,扇形图,不要x和y的label)
plt.subplot(2, 2, 4)
df['model'].value_counts().head(10).plot.pie(autopct='%1.1f%%')
plt.ylabel('')
plt.title('车型数量分布(前10)')
plt.savefig(os.path.join(imgs_dir, '各种数据的占比统计.png'))
# 2 时间分析
plt.figure(figsize=(20, 10))
# 2.1 上牌时间分布
plt.subplot(1, 2, 1)
sns.histplot(df['registration_time'], bins=20, kde=True)
plt.title('上牌时间分布')
# 2.2 上市年份分布
plt.subplot(1, 2, 2)
sns.histplot(df['year'], bins=20, kde=True)
plt.title('上市年份分布')
plt.savefig(os.path.join(imgs_dir, '时间分析.png'))
# 3. 保修存在性与其他数据的关系,标好图例
plt.figure(figsize=(20, 10))
# 3.1 保修存在占比(1表示存在,0表示不存在,扇形图)
plt.subplot(2, 2, 1)
df['warranty_time_exist'].value_counts().plot.pie(autopct='%1.1f%%')
plt.legend(['无保修', '有保修'])
plt.ylabel('')
plt.title('保修存在占比')
# 3.2 保修存在与价格的关系
plt.subplot(2, 2, 2)
sns.boxplot(x='warranty_time_exist', y='price', data=df)
plt.xticks([0, 1], ['无保修', '有保修'])
plt.title('保修存在与价格的关系')
# 3.3 保修存在与里程的关系
plt.subplot(2, 2, 3)
sns.boxplot(x='warranty_time_exist', y='mileage', data=df)
plt.xticks([0, 1], ['无保修', '有保修'])
plt.title('保修存在与里程的关系')
# 3.4 保修存在与上牌时间的关系
plt.subplot(2, 2, 4)
sns.boxplot(x='warranty_time_exist', y='registration_time', data=df)
plt.xticks([0, 1], ['无保修', '有保修'])
plt.title('保修存在与上牌时间的关系')
plt.savefig(os.path.join(imgs_dir, '保修是否存在与其他数据的关系.png'))

四、项目运行截图

1) 爬虫结果截图

2) 持久化存储结果截图

3) 可视化分析图形截图

价格、里程、品牌和车型数量分布可视化

上牌时间和上市时间分布

保修的存在性与价格、里程和上牌时间的关联

五、总结

通过本项目,我学习并掌握了网络爬虫的基本原理和方法,以及如何利用Python进行数据处理和可视化分析。在项目中,我使用Scrapy框架爬取了汽车之家网站的二手车信息,然后利用Pandas库对数据进行清洗和整理,最后使用Matplotlib库对数据进行可视化分析。通过这个项目,我不仅提高了自己的数据处理和分析能力,还为大连市二手车市场的价格分布、常购品牌等信息提供了直观的展示和分析结果,为购车提供了参考依据。

以上都是套话,下附真实的总结:

这次发现 scrapy 自带 pipeline 挺不错的,比我自己直接写一个强远了,而且报错日志什么的也很方便。不过这个网站反爬太少,header啥的根本不用加,这块我就还没学到。框架的坏处也有,很多东西一个 requests 改改参数能解决这个偏偏是类的函数,得诡异地设置一些东西去传递参数,还难写结束条件。

六、参考资料


  1. https://car.autohome.com.cn/2sc/dalian/a0_0msdgscncgpi1lto2csp1ex/ ↩︎

  2. https://www.che168.com/dalian/list/#pvareaid=100945 ↩︎

相关推荐
秃头佛爷5 分钟前
Python学习大纲总结及注意事项
开发语言·python·学习
深度学习lover1 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
API快乐传递者2 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
丕羽7 小时前
【Pytorch】基本语法
人工智能·pytorch·python
bryant_meng8 小时前
【python】Distribution
开发语言·python·分布函数·常用分布
m0_594526309 小时前
Python批量合并多个PDF
java·python·pdf
Renderbus瑞云渲染农场9 小时前
云渲染与汽车CGI图像技术优势和劣势
汽车
工业互联网专业9 小时前
Python毕业设计选题:基于Hadoop的租房数据分析系统的设计与实现
vue.js·hadoop·python·flask·毕业设计·源码·课程设计
钱钱钱端9 小时前
【压力测试】如何确定系统最大并发用户数?
自动化测试·软件测试·python·职场和发展·压力测试·postman