LSTM模块的相关代码实现/缝合模块/即插即用模块

代码详解:

  1. 生成正弦波数据generate_sin_wave函数生成一个正弦波数据序列。
  2. 数据预处理 :将生成的数据转换为DataFrame,并创建输入序列和目标值。 在 X.append(df["Value"][i:i+seq_length].values) 确保提取的是序列的值。
  3. 数据形状调整:调整输入数据的形状,以符合LSTM的输入要求。
  4. 构建LSTM模型:使用Keras构建LSTM模型,并编译模型。
  5. 拆分训练和测试数据:将数据集拆分为训练集和测试集。
  6. 训练模型:使用训练数据训练模型,并在验证集上验证模型。
  7. 预测和可视化:使用模型进行预测,并绘制真实值和预测值的对比图。
复制代码
完整代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

# 生成正弦波数据
def generate_sin_wave(seq_length, num_sequences):
    x = np.linspace(0, 100, seq_length * num_sequences)
    y = np.sin(x)
    return y

seq_length = 50  # 每个序列的长度
num_sequences = 100  # 序列数量

data = generate_sin_wave(seq_length, num_sequences)

# 转换为 DataFrame
df = pd.DataFrame(data, columns=["Value"])

# 创建输入和输出
X = []
y = []

for i in range(len(df) - seq_length):
    X.append(df["Value"][i:i+seq_length].values)  # 改动在这里,确保提取的是值
    y.append(df["Value"][i+seq_length])

X = np.array(X)
y = np.array(y)

# 数据形状调整
X = np.reshape(X, (X.shape[0], X.shape[1], 1))

# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(seq_length, 1)))
model.add(LSTM(50))
model.add(Dense(1))

model.compile(optimizer='adam', loss='mean_squared_error')

# 打印模型结构
model.summary()

# 拆分训练和测试数据
train_size = int(len(X) * 0.8)
X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]

# 训练模型
model.fit(X_train, y_train, epochs=20, batch_size=32, validation_data=(X_test, y_test))

# 预测
predictions = model.predict(X_test)

# 绘制结果
plt.figure(figsize=(12, 6))
plt.plot(y_test, label='True Values')
plt.plot(predictions, label='Predictions')
plt.legend()
plt.show()
相关推荐
一只Black1 天前
LSTM实现天气模型训练与预测
人工智能·rnn·lstm
weixin_515202492 天前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
机器学习之心3 天前
LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测
神经网络·支持向量机·lstm
WeeJot嵌入式3 天前
长短期记忆网络(LSTM):深度学习中的序列数据处理利器
人工智能·深度学习·lstm
沅_Yuan3 天前
基于LSTM长短期记忆神经网络的多分类预测【MATLAB】
神经网络·分类·lstm
微臣愚钝4 天前
【作业】LSTM
人工智能·机器学习·lstm
MarkHD4 天前
第二十四天 循环神经网络(RNN)基本原理与实现
人工智能·rnn·深度学习
weixin_750335525 天前
李沐 X 动手学深度学习--第八章 循环神经网络
人工智能·rnn·深度学习
MarkHD5 天前
第二十四天 循环神经网络(RNN)LSTM与GRU
rnn·gru·lstm
凳子花❀5 天前
CNN、RNN、LSTM和Transformer之间的区别和联系
rnn·yolo·cnn·lstm·transformer