LSTM模块的相关代码实现/缝合模块/即插即用模块

代码详解:

  1. 生成正弦波数据generate_sin_wave函数生成一个正弦波数据序列。
  2. 数据预处理 :将生成的数据转换为DataFrame,并创建输入序列和目标值。 在 X.append(df["Value"][i:i+seq_length].values) 确保提取的是序列的值。
  3. 数据形状调整:调整输入数据的形状,以符合LSTM的输入要求。
  4. 构建LSTM模型:使用Keras构建LSTM模型,并编译模型。
  5. 拆分训练和测试数据:将数据集拆分为训练集和测试集。
  6. 训练模型:使用训练数据训练模型,并在验证集上验证模型。
  7. 预测和可视化:使用模型进行预测,并绘制真实值和预测值的对比图。
复制代码
完整代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

# 生成正弦波数据
def generate_sin_wave(seq_length, num_sequences):
    x = np.linspace(0, 100, seq_length * num_sequences)
    y = np.sin(x)
    return y

seq_length = 50  # 每个序列的长度
num_sequences = 100  # 序列数量

data = generate_sin_wave(seq_length, num_sequences)

# 转换为 DataFrame
df = pd.DataFrame(data, columns=["Value"])

# 创建输入和输出
X = []
y = []

for i in range(len(df) - seq_length):
    X.append(df["Value"][i:i+seq_length].values)  # 改动在这里,确保提取的是值
    y.append(df["Value"][i+seq_length])

X = np.array(X)
y = np.array(y)

# 数据形状调整
X = np.reshape(X, (X.shape[0], X.shape[1], 1))

# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(seq_length, 1)))
model.add(LSTM(50))
model.add(Dense(1))

model.compile(optimizer='adam', loss='mean_squared_error')

# 打印模型结构
model.summary()

# 拆分训练和测试数据
train_size = int(len(X) * 0.8)
X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]

# 训练模型
model.fit(X_train, y_train, epochs=20, batch_size=32, validation_data=(X_test, y_test))

# 预测
predictions = model.predict(X_test)

# 绘制结果
plt.figure(figsize=(12, 6))
plt.plot(y_test, label='True Values')
plt.plot(predictions, label='Predictions')
plt.legend()
plt.show()
相关推荐
提娜米苏17 小时前
注意力机制:Jointly Learning to Align and Translate中从双向RNN编码器到软对齐的完整流程
rnn·注意力机制
IT古董1 天前
【第七章:时间序列模型】2.时间序列统计模型与神经网络模型-(3)神经网络预测时间序列模型: 从RNN,LSTM到nbeats模型
rnn·神经网络·lstm
rengang663 天前
14-循环神经网络(RNN):分析RNN在序列数据中的表现和特点
人工智能·rnn·深度学习
亚林瓜子3 天前
SpringBoot中使用tess4j进行OCR(在macos上面开发)
java·spring boot·macos·ocr·lstm·tess4j
文火冰糖的硅基工坊3 天前
[人工智能-大模型-125]:模型层 - RNN的隐藏层是什么网络,全连接?还是卷积?RNN如何实现状态记忆?
人工智能·rnn·lstm
文火冰糖的硅基工坊3 天前
[人工智能-大模型-122]:模型层 - RNN是通过神经元还是通过张量时间记录状态信息?时间状态信息是如何被更新的?
人工智能·rnn·深度学习
阿_旭3 天前
复杂环境下驾驶员注意力实时检测: 双目深度补偿 + 双向 LSTM
人工智能·lstm·驾驶员注意力
机器学习之心3 天前
SSA-Transformer-LSTM麻雀搜索算法优化组合模型分类预测结合SHAP分析!优化深度组合模型可解释分析,Matlab代码
分类·lstm·transformer·麻雀搜索算法优化·ssa-transformer
噜~噜~噜~5 天前
LSTM(Long Short-Term Memory)个人理解
人工智能·lstm·双层lstm·多层lstm
zhangfeng11335 天前
移动流行区间法(MEM)的原理和与LSTM、ARIMA等时间序列方法的区别
人工智能·rnn·lstm