树模型详解3-xgboost

回归树:

表达式为T(x)=wq(x),意思为:一个样本x,落到树的哪个叶子结点由q(x)得出,具体叶子结点对应的值由w函数得出

如何构建函数:

运用加法模型构建,由T个基学习器构成,也可表示为前T-1个树的结果再加上第T个树的结果

前向分步算法:一种贪心算法,每次只优化当前树至最优结果

下面写目标函数:

即为N个样本的损失函数总和加上正则项,其中正则项是t个模型复杂度的总和,目标是让这个函数最小

正则项如何展开:

T是所有叶子结点的个数,w是叶子结点值平方和

如果某棵回归树值的占比较大,则容易过拟合。

再讲下第一部分的处理

一般可以用梯度下降来处理第一部分,但树模型是阶跃的(x<0一个值大于0一个值),不能这么搞

思路:把每一个样本的损失和变换为每个叶子结点的损失和

比如L结点1=L3+L5=(y3-w1)2+(y5-w1)2

求解得w=y3+y5时能取最小值

因此可以把公式变形为:

用二阶泰勒展开可得最终需要优化的表达式如上图,由此对每个变量w求最优解

有二次方程公式推出:

那么就可以得到思路:每次拿到一个数据集,就可以把它的一阶梯度和二阶梯度gh,再得到每个叶子结点的GH,再由上面公式把叶子结点的值都计算出来

那么接下来就是如何确定树的结构能让obj最小

法1:暴力穷举

法2:精确贪心:每次只关注一个节点如何做分裂,计算分裂后增益最大的划分

停止生长:增益均<=0,叶子结点包含样本数小于等于1,层级,叶子结点个数

算法实现:

I:样本集合 d:特征维度 gain:增益

k:遍历树

(注意可以并行计算,所以不会太慢,但是每次要根据不同的特征进行样本的排序,花时间)

优化:1.减少特征数(列采样)-按树/层随机选特征

2.每个特征下能不能减少特征值:分桶,每个桶样本数基本一致。改进方法是根据损失函数找加权分位点

即有hi个这个元素的样本 ,再按分桶方法去均匀分

策略上分为全局策略和局部策略,全局指一开始订好了3.5.7来分桶,则之后所有结点都按这三个值分,这很容易导致划到一定程度就化不下去了

而局部策略则是每个特征划分的特征值都不一样

接下来讲xgboost的缺失值处理:

有些特征不知道,但是样本id、gi、hi这些都能知道。处理方法是将缺失样本全部放到某一支,比较gain,放到最大的那支里

学习率:

加个学习率让它不要学得太精确,防止过拟合

系统设计

1.核外块运算:

主要有两点,一是把没有一次性读完的数据放在磁盘上,二是单独开个线程,在运算的同时把磁盘的搬到核上,保持运算连贯性

2.分块并行:

解决的问题:

每次树结点分裂都要重新排序

算gain能否并行处理

解决方法:在基学习器学习前就排序,将排序结果保存在block中,按列进行存储。同时保存其索引,通过特征值就可以得到样本值是谁。进而得到gi,hi,得到gain,并把最大的gain筛选出来

分块计算然后让调度中心判断哪块最大

对缓存命中率低这点的优化:

给每个特征值加一个buffer记录记录g和h值

相关推荐
九尾狐ai2 分钟前
从九尾狐AI案例拆解智能矩阵技术架构:如何实现AI获客300万播放?
人工智能
wasp5202 分钟前
Hudi 客户端实现分析
java·开发语言·人工智能·hudi
秦苒&4 分钟前
【脉脉】AI 创作者 xAMA 知无不言:在浪潮里,做会发光的造浪者
大数据·c语言·数据库·c++·人工智能·ai·操作系统
chinesegf5 分钟前
嵌入模型和大语言模型的关系
人工智能·语言模型·自然语言处理
啊阿狸不会拉杆5 分钟前
《计算机操作系统》 第十一章 -多媒体操作系统
开发语言·c++·人工智能·os·计算机操作系统
_ziva_8 分钟前
分布式(三)深入浅出理解PyTorch分布式训练:nn.parallel.DistributedDataParallel详解
人工智能·pytorch·分布式
江南小书生8 分钟前
非标制造行业装配报工工时不准?缺料干扰+标准缺失如何破局?
大数据·人工智能
组合缺一11 分钟前
Solon AI Remote Skills:开启分布式技能的“感知”时代
java·人工智能·分布式·agent·langgraph·mcp
m0_7373025816 分钟前
火山引擎安全增强型云服务器,筑牢AI时代数据屏障
网络·人工智能
zl_vslam20 分钟前
SLAM中的非线性优-3D图优化之绝对位姿SE3约束SO3/t形式(十八)
人工智能·算法·计算机视觉·3d