大数据技术原理-MapReduce的应用

摘要

本实验报告详细阐述了在"大数据技术原理"课程中进行的MapReduce编程实验。实验环境基于Hadoop平台和Ubuntu操作系统。实验的核心内容包括使用MapReduce编程模型实现文件的合并去重、排序以及对给定表格信息的挖掘。实验过程中,我们首先在Hadoop分布式文件系(HDFS)中创建了必要的输入和输出目录,并上传了相应的数据文件。随后,编写了MapReduce程序,并通过Java语言实现了数据处理逻辑。实验中遇到的问题包括Hadoop的启动顺序、jar文件的导出位置以及程序中包的导入等,这些问题都通过相应的解决方案得到了妥善处理。

实验结果表明,MapReduce模型能够有效地处理大规模数据集,通过Map函数和Reduce函数的协同工作,实现了数据的高效合并、去重和排序。本实验不仅加深了对MapReduce编程原理的理解,而且提升了解决实际大数据问题的能力。

关键词:MapReduce;Hadoop;大数据;数据处理

一.实验环境:

  1. Hadoop
  2. Ubuntu

二.实验内容与完成情况:

1.编程实现文件合并和去重:

(1)先删除HDFS中与当前Linux用户hadoop对应的input和output目录:

(2)在HDFS中新建与当前Linux用户hadoop对应的input目录:

(3)创建A.txt B.txt:

(4)上传到HDFS:

(5)代码:

(6)运行结果:

2.编程实现对输入文件排序

(1)先删除HDFS中与当前Linux用户hadoop对应的input和output目录:

(2)在HDFS中新建与当前Linux用户hadoop对应的input目录:

(3)创建test1.txt test2.txt test3:

(4)代码:

(5)结果:

3.对给定表格信息挖掘:

(1)先删除HDFS中与当前Linux用户hadoop对应的input和output目录:

(2)在HDFS中新建与当前Linux用户hadoop对应的input目录:

(3)创建test1.txt

代码:

(4)结果:

三.出现的问题及解决方案:

1.实验开始编写程序之前,需要将hadoop启动方才可以继续编写程序。

2.程序导出的时候,需要将jar文件导出到相应的hadoop程序的文件夹下,这样方便程序的运行。

3.编写程序的时候,需要将导入的包一一对应,确保所有的包都导入到程序之中。

四.总结:

MapRedece分为两部分,一个是Map函数,一个是Reduce函数。Map函数接受一个键值对(key-value pair),产生一组中间键值对。MapReduce框架会将map函数产生的中间键值对里键相同的值传递给一个reduce函数。 Reduce函数接受一个键,以及相关的一组值,将这组值进行合并产生一组规模更小的值(通常只有一个或零个值)。

相关推荐
毕设源码-朱学姐5 小时前
【开题答辩全过程】以 工厂能耗分析平台的设计与实现为例,包含答辩的问题和答案
java·vue.js
Spring AI学习7 小时前
Spring AI深度解析(9/50):可观测性与监控体系实战
java·人工智能·spring
java1234_小锋8 小时前
Spring IoC的实现机制是什么?
java·后端·spring
xqqxqxxq8 小时前
背单词软件技术笔记(V2.0扩展版)
java·笔记·python
消失的旧时光-19438 小时前
深入理解 Java 线程池(二):ThreadPoolExecutor 执行流程 + 运行状态 + ctl 原理全解析
java·开发语言
哈哈老师啊8 小时前
Springboot学生综合测评系统hxtne(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
java·数据库·spring boot
4311媒体网8 小时前
帝国cms调用文章内容 二开基本操作
java·开发语言·php
zwxu_9 小时前
Nginx NIO对比Java NIO
java·nginx·nio
可观测性用观测云10 小时前
Pyroscope Java 接入最佳实践
java
武子康10 小时前
大数据-184 Elasticsearch Doc Values 机制详解:列式存储如何支撑排序/聚合/脚本
大数据·后端·elasticsearch