【一对一模型讲解】SABO-Transformer-LSTM多变量回归预测(减法平均算法)

【一对一模型讲解】SABO-Transformer-LSTM多变量回归预测(减法平均算法)

目录

效果一览





基本介绍

1.Matlab实现SABO-Transformer-LSTM多变量回归预测,减法平均算法(SABO)优化Transformer-LSTM组合模型(程序可以作为JCR一区级论文代码支撑,目前尚未发表);

2.优化参数为:学习率,隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

5.模型只是提供一个衡量数据集精度的方法,因此无法保证替换数据就一定得到您满意的结果。

程序设计

  • 完整程序和数据下载私信博主回复SABO-Transformer-LSTM多变量回归预测(减法平均算法)
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
qy-ll几秒前
Leetcode100题逐题详解
数据结构·python·学习·算法·leetcode
珂朵莉MM5 分钟前
第七届全球校园人工智能算法精英大赛-算法巅峰赛产业命题赛第3赛季优化题--碳中和
人工智能·算法
良木生香8 分钟前
【数据结构-初阶】详解线性表(2)---单链表
c语言·数据结构·算法
牛三金8 分钟前
魔改-隐语PSI通信,支持外部通信自定义
服务器·前端·算法
菜鸟233号8 分钟前
力扣106 从中序与后序遍历序列构造二叉树 java实现
java·算法·leetcode
Donald_wsn12 分钟前
牛客 栈和排序 C++
数据结构·c++·算法
沃达德软件16 分钟前
智慧警务实战模型与算法
大数据·人工智能·算法·数据挖掘·数据分析
LYFlied24 分钟前
LeetCode热题Top100:核心算法思想与前端实战套路
前端·算法·leetcode·面试·算法思想·算法套路·解题公式
coderxiaohan24 分钟前
【C++】红黑树的实现
数据结构·c++·算法