【课程总结】Day17(下):初始Seq2Seq模型

前言

"日月忽其不淹兮,春与秋其代序。"

技术更新的车轮在滚滚向前,曾经名噪一时的RNN模型,在新的技术革新下也渐渐落幕,本章我们将初步了解Seq2Seq模型,同时借助Demo代码,对Seq2Seq模型有一个直观了解。

Encoder-Decoder的回顾

回顾【课程总结】Day15(上):图像分割之语义分割,我们曾接触到U-Net模型,它是一种Encoder-Decoder模型。在此,我们重新回顾理解Encoder-Decoder模型。

  • Encoder-Decoder是一个通用的框架。
  • Encoder又称作编码器。它的作用就是:将现实问题转化为数学问题。
  • Decoder又称作解码器,它的作用是:求解数学问题,并转化为现实世界的解决方案。

只要符合上面的框架,都可以统称为Encoder-Decoder模型,其中sequence-to-sequence就是Encoder-Decoder的一种特例。

Encoder-Decoder的应用

图片 - 图片

应用:U-net系列算法的应用,如肝脏识别

音频 - 文本

应用:语音识别

图片 - 文本

应用:图像描述生成(看图说话)

论文地址:https://arxiv.org/pdf/1505.00487

文本 - 文本

应用:机器翻译,对话机器人,文章摘要,代码补全

其中,文本(RNN) - 文本(RNN)是NLP第一模型!

Seq2Seq模型

模型简介

序列到序列(seq2seq)模型是一种用于处理序列数据的架构,主要用于将一个输入序列转换为一个输出序列。它广泛应用于机器翻译、文本摘要、对话系统等任务。

模型结构

下图所示的是一个典型的机器翻译任务中,输入的文本序列(源语言表述)到输出的文本序列(目标语言表述)之间的变换。

进一步,显示编码器和解码器结构如下图:

进一步,展开编码器和解码器的步骤如下图:

进一步,结合之前所了解RNN知识,展开其结构如下图:

解释说明:

  • Seq - Encoder编码器

    • 作用:解析问句,将其编码为一个中间表达Vector
    • 本质:一个RNN(自动完成循环,一次性得到结果即可)
  • 中间表达

    • 作用:承上启下,既是上句处理的结果,又是下句生成的参考。
    • 本质:编码器RNN的最后一个时间步的隐藏状态 hn
  • Seq - Decoder解码器

    • 作用:把中间表达作为初始化状态,逐个生成下句
    • 本质:一个RNN(单步生成,自回归,即:一次生成一个词)

Seq2Seq的实践

接下来,我们通过运行示例代码,对Seq2Seq模型有一个直观了解。

拉取代码

shell 复制代码
git clone https://github.com/domonic18/seq2seq_demo.git

安装依赖包

shell 复制代码
pip install jieba
pip install OpenCC

训练

shell 复制代码
# 进入seq2seq_demo目录
python main.py

运行结果:

可以看到首次运行的时候,预测结果与真实结果相差甚远,可以说翻译的能力很差。

当训练到第6轮的时候,预测结果与真实结果已经非常接近。

验证翻译能力

输入:Am I wrong?

可以看到经过初步训练,模型可以翻译简单的英语句子。

输入:A word spoken is past recalling.

对比有道词典的翻译结果,其翻译能力还是不足的。原因是当前的demo中data训练集只有3万条数据,如果加大data.txt的训练集数据,模型的能力是可以进一步提升的。

内容小结

  • Encoder-Decoder是一种通用的架构,Encoder-Decoder模型有多种应用,其中文本-文本广泛应用于机器翻译、文本摘要,对话系统等任务,是NLP的第一模型。
  • Seq2Seq模型是Encoder-Decoder模型的一种特例。
  • Encoder编码器的作用是解析问句,将其编码为一个中间表达Vector,其本质是一个RNN。
  • 中间表达承上启下,既是上句处理的结果,又是下句生成的参考,其本质是编码器RNN的最后一个时间步的隐藏状态 hn
  • Decoder解码器的作用是把中间表达作为初始化状态,逐个生成下句,其本质是一个自回归的RNN。

参考资料

CNBlog:Seq2Seq原理详解
CSDN:自然语言处理从零到入门 Encoder-Decoder 与 Seq2Seq

相关推荐
这张生成的图像能检测吗1 分钟前
(论文速读)视觉语言模型评价中具有挑战性的选择题的自动生成
人工智能·计算机视觉·语言模型·视觉语言模型
赴3351 分钟前
残差网络 迁移学习对食物分类案例的改进
人工智能·分类·迁移学习·resnet18
林森见鹿6 分钟前
测试驱动开发 (TDD) 与 Claude Code 的协作实践详解
人工智能·驱动开发·tdd
黎燃7 分钟前
AI推荐系统:如何悄无声息地重塑你的购物车?
人工智能
AntBlack26 分钟前
每周学点 AI:ComfyUI + Modal 的一键部署脚本
人工智能·后端·aigc
老马啸西风28 分钟前
sensitive-word 敏感词性能提升14倍优化全过程 v0.28.0
安全·开源·nlp·word·敏感词·sensitive-word
l1t1 小时前
张泽鹏先生手搓的纯ANSI处理UTF-8与美团龙猫调用expat库读取Excel xml对比测试
xml·人工智能·excel·utf8·expat
THMAIL1 小时前
量化基金从小白到大师 - 金融数据获取大全:从免费API到Tick级数据实战指南
人工智能·python·深度学习·算法·机器学习·金融·kafka
zzywxc7871 小时前
AI在金融、医疗、教育、制造业等领域的落地案例(含代码、流程图、Prompt示例与图表)
人工智能·spring·机器学习·金融·数据挖掘·prompt·流程图
周末程序猿2 小时前
谈谈Vibe编程(氛围编程)
人工智能