20240803---特征选择与稀疏学习

1.特征选择:在机器学习任务中,通过样本的特征预测样本所对应的值。

(1)无关特征:通过空气的湿度、环境的温度、风力、当地人的男女比例来预测明天是否下雨。男女比例属于无关特征。

(2)冗余特征:通过房屋的面积、卧室的面积、车库的面积、城市消费水平、城市税收水平等特征来预测房价。这里面的税收水平就说多余特征。

因为税收水平和消费水平存在相关性,我们只要两者取其一就可以。(因为另一个能从其中一个推演出来)

线性相关,用线性模型做回归会出现多重共线性,会导致过拟合。

(3)减少特征:不仅减少过拟合、减少特征数量(降维)、提高模型泛化能力,而且还可以使模型获得更好的解释性,增强对特征和特征值之间的理解,加快模型的训练速度,一般的,还会获得更好的性能。问题是,在面对未知领域时,很难有足够的认识去判断特征与目标之间的相关性,特征与特征之间的相关性。这时候就需要用一些数学或工程上的方法来帮助我们更好地进行特征选择。

2.特征选择的方法

1)过滤法(Filter):

按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征










2)包裹法(Wrapper)︰

根据目标函数,每次选择若干特征或者排除若干特征,直到选择出最佳的子集。





3)嵌入法(Embedding):

先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。





补充:

三、稀疏表示




四、字典学习

(1)字典学习



(2)字典学习的解法


看到了p60,明天还有ppt1和pp3要看

相关推荐
im_AMBER2 小时前
Leetcode 78 识别数组中的最大异常值 | 镜像对之间最小绝对距离
笔记·学习·算法·leetcode
其美杰布-富贵-李2 小时前
HDF5文件学习笔记
数据结构·笔记·学习
d111111111d4 小时前
在STM32函数指针是什么,怎么使用还有典型应用场景。
笔记·stm32·单片机·嵌入式硬件·学习·算法
嗷嗷哦润橘_5 小时前
AI Agent学习:MetaGPT之我的工作
人工智能·学习·flask
知识分享小能手5 小时前
CentOS Stream 9入门学习教程,从入门到精通,Linux日志分析工具及应用 —语法详解与实战案例(17)
linux·学习·centos
2301_783360136 小时前
【学习笔记】关于RNA_seq和Ribo_seq技术的对比和BAM生成
笔记·学习
qq_397731516 小时前
Objective-C 学习笔记(第9章)
笔记·学习·objective-c
ujainu6 小时前
Python学习第一天:保留字和标识符
python·学习·标识符·保留字
sheji34166 小时前
【开题答辩全过程】以 基于Java的应急安全学习平台的设计与实现为例,包含答辩的问题和答案
java·开发语言·学习
喵了meme6 小时前
Linux学习日记21:读写锁
linux·c语言·学习