【Python机器学习】利用AdaBoost元算法提高分类性能——基于AdaBoost的分类

一旦拥有了多个弱分类以及其对应的alpha值,进行测试就变得非常容易了。现在,要将弱分类器的训练过程从程序中抽出来,然后应用在某个具体的实例上。每个弱分类器的结果以其对应的alpha值作为权重。所有这些弱分类器的结果加权求和就得到了最后的结果。

下面,用代码具体实现:

python 复制代码
def adaClassify(datToClass,classifierArr):
    dataMatrix=mat(datToClass)
    m=shape(dataMatrix)[0]
    aggClassEst=mat(zeros((m,1)))
    for i in range(len(classifierArr)):
        classEst=stumpClassify(dataMatrix,classifierArr[i]['dim'],classifierArr[i]['thresh'],classifierArr[i]['ineq'])
        aggClassEst=aggClassEst+classifierArr[i]['alpha']*classEst
        print(aggClassEst)
    return sign(aggClassEst)

上述的adaClassify()函数就是利用训练出的多个弱分类器进行分类的函数。该函数的输入是由一个或多个待分类样例datToClass以及多个弱分类器组成的数组classifierArr。函数adaClassify()首先将datToClass转换成了一个NumPy矩阵,并且得到datToClass中的待分类样例的个数m。然后构建一个0列向量aggClassEst,这个列向量与adaBoostTrainDS()中的含义相同。

接下来,遍历classifierArr中的所有弱分类器,并基于stumpClassify()对每个分类器得到一个类别的估计值。在前面构建单层决策树时,stumpClassify()在所有可能的树桩值上进行迭代来得到具有最小加权错误率的单层决策树。但在这里我们只是简单地应用了单层决策树。输出的类别估计值乘上该单层决策树的alpha权重然后累加到aggClassEst上,就完成了这一过程。最后,程序返回aggClassEst的符号,即如果aggClassEst大于0则返回+1,而如果小于0则返回-1。

实际运行:

python 复制代码
datArr,labelArr=loadSimpData()
classifierArr=adaBoostTrainDS(datArr,labelArr,30)
print(adaClassify([0,0],classifierArr))

可以发现,随着迭代的进行,数据点[0,0]的分类结果越来越强。

相关推荐
yumgpkpm17 小时前
CMP (类Cloudera) CDP7.3(400次编译)在华为鲲鹏Aarch64(ARM)信创环境中的性能测试过程及命令
大数据·hive·hadoop·python·elasticsearch·spark·cloudera
亚马逊云开发者17 小时前
亚马逊云科技 WAF 指南(十)用 Amazon Q Developer CLI 解决 DDoS 防护与 SEO 冲突问题
人工智能
Rubisco..17 小时前
牛客周赛 Round 111
数据结构·c++·算法
兮山与17 小时前
算法8.0
算法
攻城狮7号18 小时前
吴恩达的Agentic AI新课:让AI学会“干活”,而不只是“答题”
人工智能·ai课程·吴恩达·agentic ai
高山上有一只小老虎18 小时前
杨辉三角的变形
java·算法
Swift社区18 小时前
LeetCode 395 - 至少有 K 个重复字符的最长子串
算法·leetcode·职场和发展
hz_zhangrl18 小时前
CCF-GESP 等级考试 2025年9月认证C++四级真题解析
开发语言·c++·算法·程序设计·gesp·c++四级·gesp2025年9月
代码小菜鸡66618 小时前
java 常用的一些数据结构
java·数据结构·python
Dave.B18 小时前
vtkImageThreshold 图像阈值处理指南:从基础到实战优化
图像处理·人工智能·计算机视觉