【Python机器学习】利用AdaBoost元算法提高分类性能——基于AdaBoost的分类

一旦拥有了多个弱分类以及其对应的alpha值,进行测试就变得非常容易了。现在,要将弱分类器的训练过程从程序中抽出来,然后应用在某个具体的实例上。每个弱分类器的结果以其对应的alpha值作为权重。所有这些弱分类器的结果加权求和就得到了最后的结果。

下面,用代码具体实现:

python 复制代码
def adaClassify(datToClass,classifierArr):
    dataMatrix=mat(datToClass)
    m=shape(dataMatrix)[0]
    aggClassEst=mat(zeros((m,1)))
    for i in range(len(classifierArr)):
        classEst=stumpClassify(dataMatrix,classifierArr[i]['dim'],classifierArr[i]['thresh'],classifierArr[i]['ineq'])
        aggClassEst=aggClassEst+classifierArr[i]['alpha']*classEst
        print(aggClassEst)
    return sign(aggClassEst)

上述的adaClassify()函数就是利用训练出的多个弱分类器进行分类的函数。该函数的输入是由一个或多个待分类样例datToClass以及多个弱分类器组成的数组classifierArr。函数adaClassify()首先将datToClass转换成了一个NumPy矩阵,并且得到datToClass中的待分类样例的个数m。然后构建一个0列向量aggClassEst,这个列向量与adaBoostTrainDS()中的含义相同。

接下来,遍历classifierArr中的所有弱分类器,并基于stumpClassify()对每个分类器得到一个类别的估计值。在前面构建单层决策树时,stumpClassify()在所有可能的树桩值上进行迭代来得到具有最小加权错误率的单层决策树。但在这里我们只是简单地应用了单层决策树。输出的类别估计值乘上该单层决策树的alpha权重然后累加到aggClassEst上,就完成了这一过程。最后,程序返回aggClassEst的符号,即如果aggClassEst大于0则返回+1,而如果小于0则返回-1。

实际运行:

python 复制代码
datArr,labelArr=loadSimpData()
classifierArr=adaBoostTrainDS(datArr,labelArr,30)
print(adaClassify([0,0],classifierArr))

可以发现,随着迭代的进行,数据点[0,0]的分类结果越来越强。

相关推荐
Jasmine_llq几秒前
《P4587 [FJOI2016] 神秘数》
算法·倍增思想·稀疏表(st 表)·前缀和数组(解决静态区间和查询·st表核心实现高效预处理和查询·预处理优化(提前计算所需信息·快速io提升大规模数据读写效率
薛定谔的猫19828 分钟前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
超级大只老咪14 分钟前
快速进制转换
笔记·算法
u01092727115 分钟前
使用Plotly创建交互式图表
jvm·数据库·python
爱学习的阿磊17 分钟前
Python GUI开发:Tkinter入门教程
jvm·数据库·python
froginwe1118 分钟前
Scala 循环
开发语言
壮Sir不壮19 分钟前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手28 分钟前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋32 分钟前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
m0_7066532336 分钟前
C++编译期数组操作
开发语言·c++·算法