线性模型,梯度下降和反向传播已经在深度学习中学习过了,这里就直接学习怎么用pytorch来实现这些过程。
一、实现线性模型
python
import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
def forward(x):
return x*w
def loss(x, y):
y_pred = forward(x)
return (y_pred - y)**2
# 穷举法
w_list = []
mse_list = []
for w in np.arange(0.0, 4.1, 0.1):
print("w=", w)
l_sum = 0
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
loss_val = loss(x_val, y_val)
l_sum += loss_val
print('\t', x_val, y_val, y_pred_val, loss_val)
print('MSE=', l_sum/3)
w_list.append(w)
mse_list.append(l_sum/3)
plt.plot(w_list,mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
二、实现梯度下降
python
import matplotlib.pyplot as plt
# prepare the training set
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
# initial guess of weight
w = 1.0
# define the model linear model y = w*x
def forward(x):
return x*w
#define the cost function MSE
def cost(xs, ys):
cost = 0
for x, y in zip(xs,ys):
y_pred = forward(x)
cost += (y_pred - y)**2
return cost / len(xs)
# define the gradient function gd
def gradient(xs,ys):
grad = 0
for x, y in zip(xs,ys):
grad += 2*x*(x*w - y)
return grad / len(xs)
epoch_list = []
cost_list = []
print('predict (before training)', 4, forward(4))
for epoch in range(100):
cost_val = cost(x_data, y_data)
grad_val = gradient(x_data, y_data)
w-= 0.01 * grad_val # 0.01 learning rate
print('epoch:', epoch, 'w=', w, 'loss=', cost_val)
epoch_list.append(epoch)
cost_list.append(cost_val)
print('predict (after training)', 4, forward(4))
plt.plot(epoch_list,cost_list)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.show()
三、反向传播
python
import torch
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.tensor([1.0]) # w的初值为1.0
w.requires_grad = True # 需要计算梯度
def forward(x):
return x*w # w是一个Tensor
def loss(x, y):
y_pred = forward(x)
return (y_pred - y)**2
print("predict (before training)", 4, forward(4).item())
for epoch in range(100):
for x, y in zip(x_data, y_data):
l =loss(x,y) # l是一个张量,tensor主要是在建立计算图 forward, compute the loss
l.backward() # backward,compute grad for Tensor whose requires_grad set to True
print('\tgrad:', x, y, w.grad.item())
w.data = w.data - 0.01 * w.grad.data # 权重更新时,注意grad也是一个tensor
w.grad.data.zero_() # after update, remember set the grad to zero
print('progress:', epoch, l.item()) # 取出loss使用l.item,不要直接使用l(l是tensor会构建计算图)
print("predict (after training)", 4, forward(4).item())