在PAI-DSW中连接Neo4J,并批量创建知识图谱

我在 阿里云DSW实例中安装并运行Neo4J 中提到过,由于PAI-DSW的专有网络配置不能确保百分之百成功,因而很难实现通过本地的浏览器登录在PAI-DSW中启动的Neo4J图数据库。

我当时想出的一个解决办法是使用./cypher-shell语句在命令行登录neo4j,然后使用Cypher语句在命令行实现节点的增删改查。然而,如果我们想要批量创建大量的节点及关系,这种方法也很不现实。

我今天想到的一个新的解决方法是:在PAI-DSW的命令行使用./cypher-shell语句登录neo4j,然后在PAI-DSW的NoteBook中使用neo4j模块或者py2neo模块连接(在PAI-DSW的命令行中)已启动的neo4j,进行批量的节点和关系创建。这样的做法就类似于在本地的命令行启动neo4j,然后再在本地的NoteBook中使用neo4j模块或py2neo模块连接(本地命令行中启动的)neo4j,在命令行和NoteBook中登录的neo4j都处于同一局域网中。

除了需要命令行和Notebook都处于同一局域网中,该方案的另一个前提 是:命令行和Notebook都需要使用同一个Python环境,具体做法详见博客 PAI-DSW中对齐NoteBook和命令行的Python环境

1. 在命令行登录neo4j

(1)先使用下面的代码启动neo4j

python 复制代码
neo4j start

运行结果如下:

(2)然后进入neo4j安装文件夹的bin文件,运行./cypher-shell,并输入用户名和密码进行登录。

运行结果如下:

(3)使用Cypher语句查询所登录的Neo4J的图数据库中的节点数量(方便之后验证)

python 复制代码
MATCH(n) RETURN count(n) AS totalNodes

运行结果如下:

2. 在NoteBook中使用neo4j模块连接neo4j图数据库

python 复制代码
from neo4j import GraphDatabase

class Neo4jService(object):
    def __init__(self, uri, auth):
        self._driver = GraphDatabase.driver(uri, auth = auth)

    def close(self):
        self._driver.close()

    def run_query(self, query):
        with self._driver.session() as session:
            result = session.run(query)
            return result.values()

username = 'neo4j'
password = 'xxxx' # your password
auth = (username, password)
neo4j = Neo4jService("bolt://localhost:7687", auth)
answer1 = 'MATCH(n) RETURN count(n) AS totalNodes'
result = neo4j.run_query(answer1)

上面的代码运行结果如下,可知在NoteBook中能连接在命令行中启动的那个neo4j数据库。

然后使用neo4j.close()关闭与数据库的连接。

3. 在NoteBook中使用py2neo模块连接neo4j图数据库

(1)使用下面的代码先连接neo4j数据库,然后再新增一个节点

python 复制代码
from py2neo import Graph,Node,Relationship,NodeMatcher

graph=Graph("bolt://localhost:7687", auth = auth) #连接

book_node=Node('经名',name='十三经') 
graph.create(book_node) #新增节点

(2)在命令行查看节点数是否加1

这是的节点总数变成了32,较之之前多一个,所以py2neo也是能成功连接neo4j的。

在NoteBook中使用neo4j模块或py2neo模块连接neo4j数据库的过程中需要注意的是,命令行中start的neo4j数据库要一直保持运行状态

PS:

在后面使用p2neo批量创建节点和关系的时候,需要调用到xlrd第三方库,碰到了如下报错:

XLRDError: Excel xlsx file; not supported

参考博客 python xlrd库报错AttributeError 进行了解决。

最后使用py2neo迅速地创建了1000多个节点。关于如何使用py2neo批量创建节点,我这里就不再介绍了,网上也很多相关的代码。

相关推荐
y***866934 分钟前
C机器学习.NET生态库应用
人工智能·机器学习
deng12041 小时前
基于LeNet-5的图像分类小结
人工智能·分类·数据挖掘
OpenAnolis小助手1 小时前
直播预告:LLM for AIOPS,是泡沫还是银弹? |《AI 进化论》第六期
人工智能
我一身正气怎能输1 小时前
游戏大厂A*寻路优化秘籍:流畅不卡顿
人工智能·游戏
johnny2332 小时前
AI工作流编排平台
人工智能
百***35483 小时前
DeepSeek在情感分析中的细粒度识别
人工智能
Qzkj6663 小时前
从规则到智能:企业数据分类分级的先进实践与自动化转型
大数据·人工智能·自动化
weixin79893765432...4 小时前
React + Fastify + DeepSeek 实现一个简单的对话式 AI 应用
人工智能·react.js·fastify
大千AI助手4 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
狂炫冰美式4 小时前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端