使用ollama取代openai的api进行graphRAG失败记录

pip install ollama

pip install langchain_ollama

graph_documents = llm_transformer.convert_to_graph_documents(split_documents)

print(graph_documents)

偶尔会成功,但是大部分是失败的:

报错记录如下,暂时没想到好的办法:

python 复制代码
---------------------------------------------------------------------------
ValidationError                           Traceback (most recent call last)
Cell In[64], line 2
      1 # Transform documents to graph documents
----> 2 graph_documents = llm_transformer.convert_to_graph_documents(split_documents)
      3 print(graph_documents)

File D:\anaconda3\envs\graphRAG\lib\site-packages\langchain_experimental\graph_transformers\llm.py:762, in LLMGraphTransformer.convert_to_graph_documents(self, documents)
    750 def convert_to_graph_documents(
    751     self, documents: Sequence[Document]
    752 ) -> List[GraphDocument]:
    753     """Convert a sequence of documents into graph documents.
    754 
    755     Args:
   (...)
    760         Sequence[GraphDocument]: The transformed documents as graphs.
    761     """
--> 762     return [self.process_response(document) for document in documents]

File D:\anaconda3\envs\graphRAG\lib\site-packages\langchain_experimental\graph_transformers\llm.py:762, in <listcomp>(.0)
    750 def convert_to_graph_documents(
    751     self, documents: Sequence[Document]
    752 ) -> List[GraphDocument]:
    753     """Convert a sequence of documents into graph documents.
    754 
    755     Args:
   (...)
    760         Sequence[GraphDocument]: The transformed documents as graphs.
    761     """
--> 762     return [self.process_response(document) for document in documents]

File D:\anaconda3\envs\graphRAG\lib\site-packages\langchain_experimental\graph_transformers\llm.py:718, in LLMGraphTransformer.process_response(self, document)
    715     nodes_set.add((rel["tail"], rel["tail_type"]))
    717     source_node = Node(id=rel["head"], type=rel["head_type"])
--> 718     target_node = Node(id=rel["tail"], type=rel["tail_type"])
    719     relationships.append(
    720         Relationship(
    721             source=source_node, target=target_node, type=rel["relation"]
    722         )
    723     )
    724 # Create nodes list

File D:\anaconda3\envs\graphRAG\lib\site-packages\pydantic\v1\main.py:341, in BaseModel.__init__(__pydantic_self__, **data)
    339 values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data)
    340 if validation_error:
--> 341     raise validation_error
    342 try:
    343     object_setattr(__pydantic_self__, '__dict__', values)

ValidationError: 2 validation errors for Node
id
  none is not an allowed value (type=type_error.none.not_allowed)
type
  none is not an allowed value (type=type_error.none.not_allowed)
相关推荐
阿尔的代码屋1 天前
[大模型实战 01] 本地大模型初体验:Ollama 部署与 Python 调用指南
qwen·modelscope·大模型实战·ollama·大模型部署
skywalk81631 天前
尝试在openi启智社区的dcu环境安装ollama最新版0.15.2(失败)
linux·运维·服务器·ollama
Lo-Y-eH1 天前
Mac 安装 Ollama 部署 DeepSeek 模型
macos·ollama·deepseek·cherry studio
Jack_abu3 天前
谷歌开源翻译模型 TranslateGemma 深度解析与本地部署实践
llm·机器翻译·ollama·开源翻译模型
雨声不在4 天前
ollama日常使用
ai·ollama
skywalk81635 天前
使用llama.cpp和ollama推理LFM2.5-1.2B模型
llama·ollama·lfm2.5-1.2b
用什么都重名5 天前
【Dify学习笔记】:Dify插件离线转换教程
插件·dify·ollama
中杯可乐多加冰5 天前
RAG 深度实践系列(三):RAG 技术演变与核心架构的深度剖析
人工智能·深度学习·大模型·llm·知识库·rag·graphrag
摸鱼仙人~6 天前
实战 BGE-M3 与 Ollama:从接口测试到向量原理解析
ollama·bge
勇气要爆发7 天前
Docker+Ollama+LangChain:从零搭建企业级“隐私优先”本地 RAG 知识库 (附源码)
docker·容器·langchain·lora·rag·ollama·llama 3