图论进阶之路-最短路(Floyd)

时间复杂度:O(n^3)

使用场景:当需要得知任意两个点的最短距离以及其路径时使用

准备:需要两个矩阵

一个记录最短距离(D)

一个记录最短路径的最后一个结点(P)

其核心在于不断的判断越过中间结点是否比不越过中间节点距离更短,迭代的结果也会影响到后面的路径的更新,通过不断的更新,使得每两个节点直接的距离被都更新到最短

具体过程:

1.初始化 D,P 矩阵,D 矩阵初始化为所有结点的入度距离,P 矩阵 初始化为所有结点的入度结点

java 复制代码
        int MAX = Integer.MAX_VALUE;
		int[][] D = {
			{MAX,MAX,MAX,MAX,  6},
			{  9,MAX,  3,MAX,MAX},
			{  2,MAX,MAX,  5,MAX},
			{MAX,MAX,MAX,MAX,  1},
			{MAX,MAX,MAX,MAX,MAX}
		};
		int[][] P = {
			{-1,-1,-1,-1, 0},
			{ 1,-1, 1,-1,-1},
			{ 2,-1,-1, 2,-1},
			{-1,-1,-1,-1, 3},
			{-1,-1,-1,-1,-1}
		};

2.将每一个点都做一次中间结点

3.在当前中间节点的基础上,遍历所有结点,更新最短路

关于两个矩阵更新规则:

  • D: 根据上一次的 D ,若 遍历到的结点到中间结点 + 中间结点到目标结点 < 上一次遍历到的结点到目标结点,就更新
  • P: 若 D 发生变动,则将路径更新为 上一次 中间结点到目标节点的路径

共五个结点,故我们需要重复 5 次 2,3 步骤

java 复制代码
public static void main(String[] args) {
		int MAX = Integer.MAX_VALUE/2;
		int[][] D = {
			{MAX,MAX,MAX,MAX,  6},
			{  9,MAX,  3,MAX,MAX},
			{  2,MAX,MAX,  5,MAX},
			{MAX,MAX,MAX,MAX,  1},
			{MAX,MAX,MAX,MAX,MAX}
		};
		int[][] P = {
			{-1,-1,-1,-1, 0},
			{ 1,-1, 1,-1,-1},
			{ 2,-1,-1, 2,-1},
			{-1,-1,-1,-1, 3},
			{-1,-1,-1,-1,-1}
		};
		for(int k=0;k<5;k++) {//中间结点	
	
			//遍历所有的结点对
			for(int i=0;i<5;i++) {
				for(int j=0;j<5;j++) {
					if(D[i][k] + D[k][j] < D[i][j]) {
						D[i][j] = D[i][k] + D[k][j];
						P[i][j] = P[k][j];
					}
				}
			}
			
		}
	}

当中间点为 0 时,两个矩阵的更新结果为:

[∞, ∞, ∞, ∞, 6]

[9, ∞, 3, ∞, 15]

[2, ∞, ∞, 5, 8]

[∞, ∞, ∞, ∞, 1]

[∞, ∞, ∞, ∞, ∞]


[-1, -1, -1, -1, 0]

[1, -1, 1, -1, 0]

[2, -1, -1, 2, 0]

[-1, -1, -1, -1, 3]

[-1, -1, -1, -1, -1]

=================================

当中间点为 1 时,两个矩阵的更新结果为:

[∞, ∞, ∞, ∞, 6]

[9, ∞, 3, ∞, 15]

[2, ∞, ∞, 5, 8]

[∞, ∞, ∞, ∞, 1]

[∞, ∞, ∞, ∞, ∞]


[-1, -1, -1, -1, 0]

[1, -1, 1, -1, 0]

[2, -1, -1, 2, 0]

[-1, -1, -1, -1, 3]

[-1, -1, -1, -1, -1]

=================================

当中间点为 2 时,两个矩阵的更新结果为:

[∞, ∞, ∞, ∞, 6]

[5, ∞, 3, 8, 11]

[2, ∞, ∞, 5, 8]

[∞, ∞, ∞, ∞, 1]

[∞, ∞, ∞, ∞, ∞]


[-1, -1, -1, -1, 0]

[2, -1, 1, 2, 0]

[2, -1, -1, 2, 0]

[-1, -1, -1, -1, 3]

[-1, -1, -1, -1, -1]

=================================

当中间点为 3 时,两个矩阵的更新结果为:

[∞, ∞, ∞, ∞, 6]

[5, ∞, 3, 8, 9]

[2, ∞, ∞, 5, 6]

[∞, ∞, ∞, ∞, 1]

[∞, ∞, ∞, ∞, ∞]


[-1, -1, -1, -1, 0]

[2, -1, 1, 2, 3]

[2, -1, -1, 2, 3]

[-1, -1, -1, -1, 3]

[-1, -1, -1, -1, -1]

=================================

当中间点为 4 时,两个矩阵的更新结果为:

[∞, ∞, ∞, ∞, 6]

[5, ∞, 3, 8, 9]

[2, ∞, ∞, 5, 6]

[∞, ∞, ∞, ∞, 1]

[∞, ∞, ∞, ∞, ∞]


[-1, -1, -1, -1, 0]

[2, -1, 1, 2, 3]

[2, -1, -1, 2, 3]

[-1, -1, -1, -1, 3]

[-1, -1, -1, -1, -1]

=================================

4.若最后需要得到最短路路径:可以通过 先找到 路径矩阵的位置,得到前一个点,再找到该点与前一个点的前一个点,直到前一个点变成自身为止

如:我们要找到 v1 到 v0 的最短路径

先找到 1 -> 0 的最近的前一个结点,也就是 P[1][0] = 2

得知了前一个结点为 2 ,记录路径 2 -> 0

继续往前找,1 -> 2 的前一个结点,也就是 P[1][2] = 1

得知了前一个结点为 1,记录路径 1 -> 2 -> 0

再继续往前就是寻找 1 -> 1 ,自己找自己的时候就代表路径已经完整了

故 v1 到 v0 的最短路径为: 1 -> 2 -> 0

相关推荐
闻缺陷则喜何志丹12 分钟前
【C++动态规划】1105. 填充书架|2104
c++·算法·动态规划·力扣·高度·最小·书架
Dong雨23 分钟前
六大排序算法:插入排序、希尔排序、选择排序、冒泡排序、堆排序、快速排序
数据结构·算法·排序算法
达帮主32 分钟前
7.C语言 宏(Macro) 宏定义,宏函数
linux·c语言·算法
是十一月末1 小时前
机器学习之KNN算法预测数据和数据可视化
人工智能·python·算法·机器学习·信息可视化
chenziang11 小时前
leetcode hot100 路径总和
算法
lyx1426061 小时前
leetcode 3083. 字符串及其反转中是否存在同一子字符串
算法·leetcode·职场和发展
茶猫_1 小时前
力扣面试题 39 - 三步问题 C语言解法
c语言·数据结构·算法·leetcode·职场和发展
初学者丶一起加油1 小时前
C语言基础:指针(数组指针与指针数组)
linux·c语言·开发语言·数据结构·c++·算法·visual studio
积兆科技1 小时前
从汽车企业案例看仓网规划的关键步骤(视频版)
人工智能·算法·汽车·制造
Lenyiin2 小时前
01.01、判定字符是否唯一
算法·哈希算法