论文辅导 | 基于时空Transformer 网络的隧道交通运行风险 动态辨识方法

辅导文章

模型描述

为了及时发现、评估与应对高速公路隧道交通风险隐患,确保隧道运行安全通畅,构建了基于时空Transformer网络的隧道运行风险状态动态辨识方法。以隧道交通流全域检测数据与关键断面集计数据为输入,通过空间CNN卷积与时序LSTM 对隧道车流不同运行状态的时空分布特征进行无监督提取;利用大样本训练Transformer 网络层

参数,以捕获隧道交通运行状态在高维风险特征空间的分布与差异,实现隧道交通状态的风险划分与评估。采用真实隧道交通检测数据下验证了本文方法有效性,对隧道运行风险评估精度约为96%。

预测效果

相关推荐
靴子学长3 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
fantasy_arch5 小时前
CPU性能优化-磁盘空间和解析时间
网络·性能优化
苏言の狗6 小时前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习
是Dream呀7 小时前
Python从0到100(七十八):神经网络--从0开始搭建全连接网络和CNN网络
网络·python·神经网络
kaixin_learn_qt_ing8 小时前
了解RPC
网络·网络协议·rpc
安全小王子9 小时前
Kali操作系统简单介绍
网络·web安全
paixiaoxin9 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
weixin_515202499 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
Hacker_LaoYi10 小时前
【漏洞分析】DDOS攻防分析(四)——TCP篇
网络·tcp/ip·ddos