基于RNN的股票市场时间序列预测(Python)

Step 1: Loading the data

复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt


import torch.nn as nn
import torch
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
# Importing the training set
dataset = pd.read_csv('HistoricalData_1719412320530.csv')
dataset.head(10)
复制代码
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2516 entries, 0 to 2515
Data columns (total 6 columns):
 #   Column      Non-Null Count  Dtype 
---  ------      --------------  ----- 
 0   Date        2516 non-null   object
 1   Close/Last  2516 non-null   object
 2   Volume      2516 non-null   int64 
 3   Open        2516 non-null   object
 4   High        2516 non-null   object
 5   Low         2516 non-null   object
dtypes: int64(1), object(5)
memory usage: 118.1+ KB
# change time order


dataset['Date'] = pd.to_datetime(dataset['Date'], format='%m/%d/%Y')


# Sort the DataFrame in ascending order
dataset = dataset.sort_values(by='Date', ascending=True)


# Reset index if necessary
dataset = dataset.reset_index(drop=True)
dataset.head(5)
复制代码
dataset['Close/Last'] = dataset['Close/Last'].str.replace('$', '').astype(float)
dataset.head(5)
复制代码
dataset_cl = dataset['Close/Last'].values
# Feature Scaling
from sklearn.preprocessing import MinMaxScaler


sc = MinMaxScaler(feature_range = (0, 1))


# scale the data
dataset_cl = dataset_cl.reshape(dataset_cl.shape[0], 1)
dataset_cl = sc.fit_transform(dataset_cl)
dataset_cl
array([[2.91505500e-04],
       [2.95204809e-04],
       [3.24799276e-04],
       ...,
       [9.33338463e-01],
       [8.70746165e-01],
       [9.29787127e-01]])

Step 2: Cutting time series into sequences (Sliding Window)

复制代码
input_size = 7


# Create a function to process the data into 7 day look back slices
# lb is window size
def processData(data, lb):
    X, y = [], [] # X is input vector, Y is output vector
    for i in range(len(data) - lb - 1):
        X.append(data[i: (i + lb), 0])
        y.append(data[(i + lb), 0])
    return np.array(X), np.array(y)


X, y = processData(dataset_cl, input_size)

Step 3: Split training and testing sets

复制代码
X_train, X_test = X[:int(X.shape[0]*0.80)], X[int(X.shape[0]*0.80):]
y_train, y_test = y[:int(y.shape[0]*0.80)], y[int(y.shape[0]*0.80):]
print(X_train.shape[0])
print(X_test.shape[0])
print(y_train.shape[0])
print(y_test.shape[0])


# reshaping
X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))
X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))
2006
502
2006
502

Step 4: Build and run an RNN regression model

复制代码
class RNN(nn.Module):
    def __init__(self, i_size, h_size, n_layers, o_size, dropout=0.1, bidirectional=False):
        super().__init__()
        # super(RNN, self).__init__()


        self.num_directions = bidirectional + 1


        # LSTM module
        self.rnn = nn.LSTM(
            input_size = i_size,
            hidden_size = h_size,
            num_layers = n_layers,
            dropout = dropout,
            bidirectional = bidirectional
        )


        # self.relu = nn.ReLU()


        # Output layer
        self.out = nn.Linear(h_size, o_size)


    def forward(self, x, h_state):
      # r_out contains the LSTM output at each time step, and hidden_state
      # contains the hidden and cell states after processing the entire sequence.
        r_out, hidden_state = self.rnn(x, h_state)


        hidden_size = hidden_state[-1].size(-1)


        # Convert dimension of r_out (-1 denotes it depends on other parameters)
        r_out = r_out.view(-1, self.num_directions, hidden_size)


        # r_out = self.relu(r_out)


        outs = self.out(r_out)


        return outs, hidden_state
# Global setting
INPUT_SIZE = input_size # LSTM input size


HIDDEN_SIZE = 256


NUM_LAYERS = 3 # LSTM 'stack' layer


OUTPUT_SIZE = 1




# Hyper parameters
learning_rate = 0.001
num_epochs = 300


rnn = RNN(INPUT_SIZE, HIDDEN_SIZE, NUM_LAYERS, OUTPUT_SIZE, bidirectional=False)
rnn.cuda()


optimiser = torch.optim.Adam(rnn.parameters(), lr=learning_rate)
criterion = nn.MSELoss()


hidden_state = None
rnn
RNN(
  (rnn): LSTM(7, 256, num_layers=3, dropout=0.1)
  (out): Linear(in_features=256, out_features=1, bias=True)
)
history = [] # save loss in each epoch
# .cuda() copies element to the GPU memory
X_test_cuda = torch.tensor(X_test).float().cuda()
y_test_cuda = torch.tensor(y_test).float().cuda()


# Use all the data in one batch
inputs_cuda = torch.tensor(X_train).float().cuda()
labels_cuda = torch.tensor(y_train).float().cuda()


# training
for epoch in range(num_epochs):


    # Train mode
    rnn.train()


    output, _ = rnn(inputs_cuda, hidden_state)
    # print(output.size())


    loss = criterion(output[:,0,:].view(-1), labels_cuda)
    optimiser.zero_grad()
    loss.backward()   # back propagation
    optimiser.step()   # update the parameters


    if epoch % 20 == 0:
        # Convert train mode to evaluation mode (disable dropout)
        rnn.eval()


        test_output, _ = rnn(X_test_cuda, hidden_state)
        test_loss = criterion(test_output.view(-1), y_test_cuda)
        print('epoch {}, loss {}, eval loss {}'.format(epoch, loss.item(), test_loss.item()))
    else:
        print('epoch {}, loss {}'.format(epoch, loss.item()))
    history.append(loss.item())
# iterate over all the learnable parameters in the model, which include the
# weights and biases of all layers in the model
# (both the LSTM layers and the final linear layer)
for param in rnn.parameters():
    print(param.data)

Step 5: Checking model performance

复制代码
plt.plot(history)
# dplt.plot(history.history['val_loss'])
复制代码
# X_train_X_test = np.concatenate((X_train, X_test),axis=0)
# hidden_state = None
rnn.eval()
# test_inputs = torch.tensor(X_test).float().cuda()
test_predict, _ = rnn(X_test_cuda, hidden_state)
test_predict_cpu = test_predict.cpu().detach().numpy()
plt.plot(sc.inverse_transform(y_test.reshape(-1,1)))
plt.plot(sc.inverse_transform(test_predict_cpu.reshape(-1,1)))
plt.legend(['y_test','test_predict_cpu'], loc='center left', bbox_to_anchor=(1, 0.5))
复制代码
# plot original data
plt.plot(sc.inverse_transform(y.reshape(-1,1)), color='k')


# train_inputs = torch.tensor(X_train).float().cuda()
train_pred, hidden_state = rnn(inputs_cuda, None)
train_pred_cpu = train_pred.cpu().detach().numpy()


# use hidden state from previous training data
test_predict, _ = rnn(X_test_cuda, hidden_state)
test_predict_cpu = test_predict.cpu().detach().numpy()


# plt.plot(scl.inverse_transform(y_test.reshape(-1,1)))
split_pt = int(X.shape[0] * 0.80) + 7 # window_size
plt.plot(np.arange(7, split_pt, 1), sc.inverse_transform(train_pred_cpu.reshape(-1,1)), color='b')
plt.plot(np.arange(split_pt, split_pt + len(test_predict_cpu), 1), sc.inverse_transform(test_predict_cpu.reshape(-1,1)), color='r')


# pretty up graph
plt.xlabel('day')
plt.ylabel('price of Nvidia stock')
plt.legend(['original series','training fit','testing fit'], loc='center left', bbox_to_anchor=(1, 0.5))
plt.show()
复制代码
MMSE = np.sum((test_predict_cpu.reshape(1,X_test.shape[0])-y[2006:])**2)/X_test.shape[0]
print(MMSE)
0.0018420128176938062



担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》,《控制与决策》等EI期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

 
知乎学术咨询:https://www.zhihu.com/consult/people/792359672131756032?isMe=1
相关推荐
Antonio91513 分钟前
【图像处理】图像的基础几何变换
图像处理·人工智能·计算机视觉
星释21 分钟前
Rust 练习册 :Leap与日期计算
开发语言·后端·rust
新加坡内哥谈技术1 小时前
Perplexity AI 的 RAG 架构全解析:幕后技术详解
人工智能
武子康1 小时前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
悟能不能悟2 小时前
java的java.sql.Date和java.util.Date的区别,应该怎么使用
java·开发语言
Mr_Xuhhh2 小时前
GUI自动化测试--自动化测试的意义和应用场景
python·集成测试
Sirius Wu2 小时前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
2301_764441332 小时前
水星热演化核幔耦合数值模拟
python·算法·数学建模
循环过三天2 小时前
3.4、Python-集合
开发语言·笔记·python·学习·算法
Q_Q5110082853 小时前
python+django/flask的眼科患者随访管理系统 AI智能模型
spring boot·python·django·flask·node.js·php