【Deep-ML系列】Linear Regression Using Gradient Descent(手写梯度下降)

题目链接:Deep-ML

这道题主要是要考虑矩阵乘法的维度,保证维度正确,就可以获得最终的theata

python 复制代码
import numpy as np
def linear_regression_gradient_descent(X: np.ndarray, y: np.ndarray, alpha: float, iterations: int) -> np.ndarray:
    """
    Linear regression
    :param X: m * n
    :param y:
    :param alpha:
    :param iterations:
    :return:
    """
    m, n = X.shape
    theta = np.zeros((n, 1))
    y = y.reshape(m, 1)     # 保证y是列向量
    for i in range(iterations):
        prediction = np.dot(X, theta)   # m * 1
        error = prediction - y          # m * 1
        gradient = np.dot(X.T, error)   # n * 1
        theta = theta - alpha * (1 / m) * gradient
    theta = np.round(theta, decimals=4)
    return theta

if __name__ == '__main__':
    X = np.array([[1, 1], [1, 2], [1, 3]])
    y = np.array([1, 2, 3])
    alpha = 0.01
    iterations = 1000
    print(linear_regression_gradient_descent(X, y, alpha, iterations))
相关推荐
A懿轩A44 分钟前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
古希腊掌管学习的神1 小时前
[搜广推]王树森推荐系统——矩阵补充&最近邻查找
python·算法·机器学习·矩阵
云边有个稻草人1 小时前
【优选算法】—复写零(双指针算法)
笔记·算法·双指针算法
半盏茶香1 小时前
在21世纪的我用C语言探寻世界本质 ——编译和链接(编译环境和运行环境)
c语言·开发语言·c++·算法
martian6651 小时前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础
忘梓.2 小时前
解锁动态规划的奥秘:从零到精通的创新思维解析(3)
算法·动态规划
人机与认知实验室2 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
黑色叉腰丶大魔王2 小时前
基于 MATLAB 的图像增强技术分享
图像处理·人工智能·计算机视觉
tinker在coding4 小时前
Coding Caprice - Linked-List 1
算法·leetcode
迅易科技5 小时前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造