【Deep-ML系列】Linear Regression Using Gradient Descent(手写梯度下降)

题目链接:Deep-ML

这道题主要是要考虑矩阵乘法的维度,保证维度正确,就可以获得最终的theata

python 复制代码
import numpy as np
def linear_regression_gradient_descent(X: np.ndarray, y: np.ndarray, alpha: float, iterations: int) -> np.ndarray:
    """
    Linear regression
    :param X: m * n
    :param y:
    :param alpha:
    :param iterations:
    :return:
    """
    m, n = X.shape
    theta = np.zeros((n, 1))
    y = y.reshape(m, 1)     # 保证y是列向量
    for i in range(iterations):
        prediction = np.dot(X, theta)   # m * 1
        error = prediction - y          # m * 1
        gradient = np.dot(X.T, error)   # n * 1
        theta = theta - alpha * (1 / m) * gradient
    theta = np.round(theta, decimals=4)
    return theta

if __name__ == '__main__':
    X = np.array([[1, 1], [1, 2], [1, 3]])
    y = np.array([1, 2, 3])
    alpha = 0.01
    iterations = 1000
    print(linear_regression_gradient_descent(X, y, alpha, iterations))
相关推荐
l1t5 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华6 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu7 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师8 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr82810 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
风中的微尘10 小时前
39.网络流入门
开发语言·网络·c++·算法
研梦非凡10 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成10 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃10 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)11 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑