国产芯上运行TinyMaxi轻量级的神经网络推理库-米尔基于芯驰D9国产商显板

本篇测评由优秀测评者"短笛君"提供。


本文将介绍基于米尔电子MYD-YD9360商显板(米尔基于芯驰D9360国产开发板)的TinyMaxi轻量级的神经网络推理库方案测试。

算力测试

TinyMaix 是面向单片机的超轻量级的神经网络推理库,即 TinyML 推理库,可以让你在任意单片机上运行轻量级深度学习模型~ 开源地址:

GitHub - sipeed/TinyMaix: TinyMaix is a tiny inference library for microcontrollers (TinyML).

搭建的环境为编译的Ubuntu18.04 已经预装好cmake make工具

由于魔法网络原因,这里提前下载好tar包到宿主机上,然后传输到板卡中解压

  • 查看cmake版本

    cmake -version

  • 查看cmake版本

    make -version

确认文件路径,尽量不要拷贝到有权限的路径下

自带示例

文件结构

MNIST示例

MNIST是手写数字识别任务

cd到examples/mnist目录下 使用mkdir build && cd build 命令切换到build文件夹下

复制代码
cmake ..
make./ mnist

cmake生成构建系统

使用make构建可执行文件然后运行

可以看到输出信息

MNIST 示例默认未使用任何指令加速,运行了一张 28×28 的手写数字模拟图像,共消耗了 0.114 毫秒

MBNET示例

mbnet 是适用于移动设备的简单图像分类模型。

  • 切换到 /examples/mbnet 目录:

  • 修改 main.c 文件

  • 创建 build 文件夹并切换

  • 使用 cmake 命令生成构建系统

  • 使用 make 命令构建系统,生成可执行文件

  • 运行可执行文件,执行效果如下

  • MBNET 示例运行输入了一张 96×96×3 的 RGB 图像,输出 1000 分类,共消耗了 16.615 毫秒

运行cifar10 demo

相关推荐
软件聚导航4 分钟前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
陈天伟教授1 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪1 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴06161 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor2 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
梵刹古音2 小时前
【C语言】 结构化编程与选择结构
c语言·开发语言·嵌入式
万事ONES2 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr67892 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养
软件开发技术深度爱好者2 小时前
浅谈人工智能(AI)对个人发展的影响
人工智能
一路向北he2 小时前
esp32 arduino环境的搭建
人工智能