国产芯上运行TinyMaxi轻量级的神经网络推理库-米尔基于芯驰D9国产商显板

本篇测评由优秀测评者"短笛君"提供。


本文将介绍基于米尔电子MYD-YD9360商显板(米尔基于芯驰D9360国产开发板)的TinyMaxi轻量级的神经网络推理库方案测试。

算力测试

TinyMaix 是面向单片机的超轻量级的神经网络推理库,即 TinyML 推理库,可以让你在任意单片机上运行轻量级深度学习模型~ 开源地址:

GitHub - sipeed/TinyMaix: TinyMaix is a tiny inference library for microcontrollers (TinyML).

搭建的环境为编译的Ubuntu18.04 已经预装好cmake make工具

由于魔法网络原因,这里提前下载好tar包到宿主机上,然后传输到板卡中解压

  • 查看cmake版本

    cmake -version

  • 查看cmake版本

    make -version

确认文件路径,尽量不要拷贝到有权限的路径下

自带示例

文件结构

MNIST示例

MNIST是手写数字识别任务

cd到examples/mnist目录下 使用mkdir build && cd build 命令切换到build文件夹下

复制代码
cmake ..
make./ mnist

cmake生成构建系统

使用make构建可执行文件然后运行

可以看到输出信息

MNIST 示例默认未使用任何指令加速,运行了一张 28×28 的手写数字模拟图像,共消耗了 0.114 毫秒

MBNET示例

mbnet 是适用于移动设备的简单图像分类模型。

  • 切换到 /examples/mbnet 目录:

  • 修改 main.c 文件

  • 创建 build 文件夹并切换

  • 使用 cmake 命令生成构建系统

  • 使用 make 命令构建系统,生成可执行文件

  • 运行可执行文件,执行效果如下

  • MBNET 示例运行输入了一张 96×96×3 的 RGB 图像,输出 1000 分类,共消耗了 16.615 毫秒

运行cifar10 demo

相关推荐
一切尽在,你来4 小时前
1.2 LangChain 1.2.7 版本核心特性与升级点
人工智能·langchain
LYFlied5 小时前
AI大时代下前端跨端解决方案的现状与演进路径
前端·人工智能
深蓝电商API5 小时前
图片验证码识别:pytesseract+opencv入门
人工智能·opencv·计算机视觉·pytesseract
.Katherine௰5 小时前
AI数字人模拟面试机器人
人工智能
光影少年5 小时前
AI 前端 / 高级前端
前端·人工智能·状态模式
BackCatK Chen5 小时前
STM32+FreeRTOS:嵌入式开发的黄金搭档,未来十年就靠它了!
stm32·单片机·嵌入式硬件·freertos·低功耗·rtdbs·工业控制
zhangshuang-peta5 小时前
OpenCode vs Claude Code vs OpenAI Codex:AI编程助手全面对比
人工智能·ai agent·mcp·peta
Bruk.Liu5 小时前
(LangChain 实战14):基于 ChatMessageHistory 自定义实现对话记忆功能
人工智能·python·langchain·agent
代码改善世界5 小时前
CANN中的AI算子开发:ops-nn仓库深度解读
人工智能
大江东去浪淘尽千古风流人物5 小时前
【VLN】VLN(Vision-and-Language Navigation视觉语言导航)算法本质,范式难点及解决方向(1)
人工智能·python·算法